IMPACT S.C. AUTOMATYKA PRZEMYSŁOWA

www.impact.com.pl

Instrukcja AKPiA dla sterowników kotłowych zainstalowanych w Centralnej Nastawni Kotłowej ciepłowni "SZOPINEK"

> 02-555 Warszawa Al. Niepodległości 177 tel. 825-55-85 fax. 825-79-14 E-mail. <u>impact@impact.com.pl</u>

> > Warszawa 04.11.99

Spis treści

1.0	Przezn	rzeznaczenie instrukcji4				
2.0	Sterow	nik MCS68	.4			
2	1 Prze	znaczenie sterownika	4			
2.2	2 Tvpv	z svanałów obiektowych	.4			
	2.2.1	Svgnaly analogowe weiściowe (pomiarowe)	.5			
	2.2.2	Sygnały wejściowe impulsowe (pomiarowe)	.5			
	2.2.3	Svgnały analogowe wyiściowe (sterujace).	.5			
	2.2.4	Svgnały dwustanowe weiściowe	.5			
	2.2.5	Svgnalv dwustanowe wviściowe	.5			
~ ~	T .		•			
3.0	Tryby	bracy sterownika	. 6			
3.1	1 Prac	a w trybie sterowania lokalnego	. 6			
3.2	2 Prac	a w trybie sterowania sterownikowego	. 6			
4.0	Główn	e obwody sterowania kotłem	. 8			
4.1	1 Obw	ody regulacji	. 8			
	4.1.1	Stabilizacja przepływu wody przez kocioł	. 8			
	4.1.2	Stabilizacja mocy kotła	. 9			
	4.1.3.	Stabilizacja podciśnienia w komorze spalania	. 9			
	4.1.4	Stabilizacja ciśnienia podmuchowe	. 9			
4.2	2 Blok	ady kotłowe	. 9			
4.3	3 Blok	ady wzajemne pracy urządzeń	10			
	4.3.1	Blokada wentylatora podmuchu od wentylatora wyciągowego	10			
	4.3.2	Blokada dozownika celkowego od podajnika ślimakowego	10			
	4.3.3	Blokada podajnika ślimakowego od odżużlacza	10			
	4.3.4	Blokada od kluczy zezwalających na pracę urządzeń	11			
50	Zostaw	ionio svanalów obioktowych kotla 1	12			
5.0	Leslaw	Terrie Sygnatow Oblektowych kona i	12			
	5.1.1	Zestawienie analogowych sygnałów wejściowych	12			
	5.1.2	Zestawienie analogowych sygnałów wyjściowych	13			
	5.1.3	Zestawienie dwustanowych sygnałów wejściowych	13			
	5.1.4	Zestawienie dwustanowych sygnałów wyjściowych	14			
5.2	Zestaw	ienie sygnałów obiektowych kotła 2	15			
	E 0 4		45			
	5.2.1	Wejsciowe sygnaty dwustanowe	15			
	5.2.2	wyjsciowe sygnały dwustanowe	10			
	5.Z.3	Sygnaty analogowe wejsciowe	17			
	J.Z.4	Sygnary analogowe wyjsciowe	10			
5.3	Zestaw	vienie sygnałów obiektowych kotła 3	19			
	5.3.1	Sygnały wejściowe dwustanowe	19			
	5.3.2	Sygnały wyjściowe dwustanowe	20			
	5.3.3.	Sygnały wejściowe analogowe	21			
	5.3.4	Sygnały wyjściowe analogowe	22			
6.	Sterow	anie kotłem za pomocą stacji opreratorskiej	23			
6.	1 Zała	czanie wyłączanie urządzeń	24			
6.2	2 Wpro	owadzanie punktów pracy	24			
6.3	3 Stero	owanie wentylatora wyciagowego	25			
6.4	4 Stere	owanie wentylatora podmuchowego	26			
6.5	5 Stere	owanie wentylatora powietrza wtórnego	27			
6.6	6 Stere	owanie rusztów mechanicznych	28			
6.7	7 Stere	owanie odżużlaczy	29			
6.8	B Stere	owanie podajników ślimakowych	30			
6.9	9 Stero	owanie dozowników celkowych	31			
6.1	10 Stere	owanie pomp mieszających	32			
6.1	11 Regi	ulacja mocy kotła	33			

6.12	Regulacja podciśnienia w komorze paleniskowej	
0.13	Regulacia przepławy wedy przez kosiek	
0.14	Regulacja przepływu wody przez kocioł	ວວ ວຣ
0.15	Poiniary temperatur	
7.1 Pi	rezentacja zarejestrowanych danych w postaci wykresów	
7.1	Opcja wyboru zarejestrowanego parametru	
7.2	Opcja drukowania wykresu	41
8.0 P	odstawowe dane eksploatacyjne sterownika MCS68	
8.1	Karta DIN16 (nowego typu)	
8.2	Karta DOUT8	45
8.3	Karta SYN01	
8.4	Karta sieciowa NET-485-MCS	50
8.5	Karta NET-485-IBM	
8.6	Karta AD16I	53
8.7	Karta PT4	55
8.8	Karta DA4I (stary typ)	58
8.9	Karta DA4I-X (nowy typ)	59
9.0 Te	estowanie pracy sterownika	62
9.1	Status sterownika	62
9.2	Testowanie kart I/O	63
9.2	2.1 Testowanie karty DIN16	63
9.2	2.2 Testowanie karty DOUT8	63
9.2	2.3 Testowanie karty AD16	63
9.2	2.4 Testowanie karty DA4I, DA4I-X	64
9.3	Skalowanie kart analogowych	65
9.3	3.1 Skalowanie kart AD16I	65
9.3	3.2 Skalowanie kart PT4	66
9.3	3.3 Skalowanie kart DA4I, DA4I-X	67
9.4	Sprawdzanie obiektowych sygnałów sterująco pomiarowych	
9.4	4.1 Sprawdzanie sygnałów analogowych – wejściowych	
9.4	I.2 Sprawdzanie sygnałów analogowych – wyjściowych	
9.4	4.3 Sprawdzanie sygnałów dwustanowych – wejściowych	
9.4	4.4 Sprawdzanie sygnałow dwustanowych – wyjsciowych	68

1.0 Przeznaczenie instrukcji

Niniejsza instrukcja ma zapoznać pracowników technicznych z zasadami eksploatacji i i podstawową obsługą serwisową systemu sterowania pracą kotłów wodnych zainstalowanym w ciepłowni "Szopinek".

2.0 Sterownik MCS68

Sterownik jest zrealizowany w oparciu o mikroprocesor 68020 firmy MOTOROLA. Konstrukcja oprogramowania umożliwia obsłużenie do 2000 sygnałów analogowych i 2000 sygnałów dwustanowych. Sterownik umożliwia jednoczesne prowadzenie 64 programów sekwencyjnych oraz 255 specjalizowanych bloków funkcyjnych. Komunikacja ze sterownikiem odbywa się po łączu RS485 o max długości do 1500 m . Jako stanowisko operatorskie wykorzystywany jest komputer PC wyposażony w specjalizowany pakiet transmisji. Do jednego stanowiska wizualizacji można podłączyć do 8 sterowników MCS68.

2.1 Przeznaczenie sterownika

Sterownik MCS68 jest głównym elementem systemu sterowania pracą kotła. Doprowadzone sygnały pomiarowe i wykonawcze umożliwiają prowadzenie procesu spalania w trybie pracy automatycznej. Sterownik kontroluje parametry pracy kotła, a w sytuacjach granicznych może awaryjnie odstawić kocioł. Przebieg wszystkich parametrów pracy kotła jest rejestrowany i przechowywany w komputerze stacji operatorskiej przez okres roku.

2.2 Typy sygnałów obiektowych

Komunikacja sterownika z obiektem odbywa się za pomocą sygnałów analogowych i dwustanowych. Zostały one umownie oznaczone jako :

RA – sygnały analogowe

RD – sygnały dwustanowe

Rozróżniane są dodatkowo sygnały wejściowe oraz wyjściowe zarówno analogowe jak dwustanowe.

2.2.1 Sygnały analogowe wejściowe (pomiarowe)

Sygnały analogowe wejściowe są doprowadzone do kart pomiarowych AD16. Do jednej karty można podłączyć 16 pomiarów. Jako sygnał pomiarowy przyjęto prąd z zakresu 4-20 mA. Źródłem sygnałów są dwuprzewodowe przetworniki obiektowe z sygnału rezystancyjnego na prąd (PT100), sygnału napięciowego na prąd (termopary), ciśnienia na prąd. Większość przetworników otrzymuje zasilanie pętli prądowej ze sterownika. Wejściowe sygnały analogowe nie są izolowane galwanicznie między sobą, oraz od sterownika.

2.2.2 Sygnały wejściowe impulsowe (pomiarowe)

Odmianą analogowych sygnałów wejściowych są sygnały impulsowe. Wartość sygnału jest proporcjonalna do częstotliwości impulsów podawanych do karty CTC8. Jedna karta może obsłużyć 8 sygnałów wejściowych. Jako sygnał pomiarowy przyjęto impulsy o częstotliwości z przedziału 0-5000 Hz. Amplituda napięcia sygnału powinna wynosić 24V. Prąd wejściowy wynosi ok. 10 mA (przy napięciu 24V).

Wejścia impulsowe są galwanicznie oddzielone od wewnętrznych sygnałów sterownika.

2.2.3 Sygnały analogowe wyjściowe (sterujące)

Sygnały analogowe wyjściowe są wyprowadzane z kart DA4I. Pojedyncza karta generuje 4 sygnały wyjściowe. Zakres prądowy sygnału zawiera się w przedziale 4-20 mA. Karta zapewnia konstrukcyjnie izolację galwaniczną sygnałów wyjściowych między sobą oraz sterownikiem. Wymagane jest podanie zewnętrznych separowanych zasileń 24V dla każdego wyjścia analogowego.

2.2.4 Sygnały dwustanowe wejściowe

Sygnały wejściowe dwustanowe są doprowadzone do kart DIN16. Do jednej karty można podłączyć 16 sygnałów dwustanowych. Amplituda sygnału w stanie 0 =0V, w stanie 1=24V. Prąd wejściowy pojedynczego wejścia ok. 10 mA (przy napięciu 24V). Karta zapewnia konstrukcyjnie izolację galwaniczną sygnałów wyjściowych między sobą oraz sterownikiem.

2.2.5 Sygnały dwustanowe wyjściowe

Sygnały wyjściowe dwustanowe są wyprowadzane z kart DOUT8. Jedna karta generuje 8 sygnałów dwustanowych wyjściowych. Amplituda sygnału w stanie 0=0V, w stanie 1=24V. Obciążalność pojedynczego wyjścia wynosi 1.8A Wyjście jest zabezpieczone przed zwarciem. W przypadku długotrwałego zwarcia prąd wyjściowy jest redukowany do 0A. Co kilkanaście sekund stan zwarcia jest kontrolowany. W przypadku kontynuacji zwarcia cykl się powtarza. Po ustąpieniu zwarcia stan wyjścia samoczynnie powraca do normalnego trybu pracy. Konstrukcyjnie karta zapewnia izolację galwaniczną par sygnałów wyjściowych między sobą i wszystkich sygnałów wyjściowych od sygnałów wewnętrznych sterownika.

3.0 Tryby pracy sterownika

Sterowanie pracą pieca może odbywać się w dwóch trybach.

- sterowanie lokalne

- sterowanie sterownikowe.

3.1 Praca w trybie sterowania lokalnego

W trybie sterowania lokalnego (remontowego) załączanie, wyłączanie, kontrola poprawności pracy urządzeń wykonawczych odbywa się na lokalnych panelach sterujących poszczególnych urządzeń. Sygnały sterujące przychodzące ze strony sterownika muszą być lokalnie elektrycznie odłączone, przez co nie mogą wprowadzić w tym czasie żadnego działania.

3.2 Praca w trybie sterowania sterownikowego

W trybie sterowania sterownikowego możliwe są trzy opcje sterowania

- sterowanie ręczne

- sterowanie automatyczne
- sterowanie mieszane.

3.2.1 Sterowanie ręczne

W trybie sterowania ręcznego załączanie, wyłączanie, kontrola poprawności pracy urządzeń wykonawczych odbywa się w sterowniku na podstawie informacji dostarczonych z urządzeń wykonawczych. Operator systemu za pośrednictwem ekranu komputera może wydać polecenie sterujące dowolnemu urządzeniu. Sterownik może pracować z blokadami włączonymi lub w szczególnych przypadkach wyłączonymi . W trybie tym sygnały sterujące z lokalnych panelów kontrolno sterujących muszą być miejscowo elektrycznie odłączone, przez co nie mogą wprowadzić żadnego działania.

3.2.2 Sterowanie automatyczne

W trybie sterowania automatycznego sterowanie kotłem parowym odbywa się po przez sterownik kotłowy. Operator uruchamia układy regulacji automatycznej. Wpływ operatora na pracę sterownika jest możliwy po przez zadawanie wartości początkowych ciśnienia, posuwu rusztu. Zadaniem sterownika jest korekcja nastaw w celu uzyskania zadanej wartości ciśnienia pary. W trybie tym sygnały sterujące z lokalnych panelów kontrolno sterujących muszą być miejscowo elektrycznie odłączone, przez co nie mogą wprowadzić żadnego działania.

3.2.3 Sterowanie mieszane

W trybie sterowania mieszanego operator decyduje które obwody regulacji są sterowane automatycznie. Sterowanie pozostałych układów prowadzone jest ręcznie. Zakres sterowania poszczególnych obwodów jest odpowiedni do dokonanego wyboru operatora.

4.0 Główne obwody sterowania kotłem

W skład urządzeń pracujących na potrzeby kotła nr.1 wchodzą następujące zespoły:

- 1. Wentylator wyciągowy strona lewa
- 2. Wentylator wyciągowy strona prawa
- 3. Wentylator podmuchowy strona lewa
- 4. Wentylator podmuchowy strona prawa
- 5. Wentylator powietrza wtórnego strona lewa
- 6. Wentylator powietrza wtórnego strona prawa
- 7. Napęd rusztu strona lewa
- 8. Napęd rusztu strona prawa
- 9. Zawór mieszający
- 10. Pompa mieszająca mała
- 11. Pompa mieszająca duża
- 12. Dozownik celkowy strona lewa
- 13. Dozownik celkowy strona prawa
- 14. Podajnik ślimakowy strona lewa
- 15. Podajnik ślimakowy strona prawa
- 16. Odżużlacz strona lewa
- 17. Odżużlacz strona prawa

4.1 Obwody regulacji

System sterowania kotłem WR25 realizuje następujące obwody regulacji:

- stabilizacja przepływu wody przez kocioł
- stabilizacja mocy kotła
- stabilizacja podciśnienia w komorze spalania
- stabilizacja ciśnienia podmuchowego

4.1.1 Stabilizacja przepływu wody przez kocioł

Układ stabilizacji przepływu wody przez kocioł utrzymuje przepływ wody na zadanym poziomie. Elementem wykonawczym jest zawór regulacyjny w obwodzie podmieszania.

W obwodzie podmieszania znajdują się dwie pompy o zróżnicowanej wydajności. Ilość załączonych pomp jest uzależniona od aktualnego przepływu w obwodzie podmieszania. Praca obwodu podmieszania może być w trybie AUTO lub MANUAL.

W trybie AUTO pozycja zaworu ustawiana jest na taką wartość aby suma przepływów wody podmieszajacej i z miasta dawała wartość stałą, zadaną przez operatora.

W trybie MANUAL operator zadaje stałą wartość przepływu wody w obwodzie podmieszania Przepływ wody przez kocioł nie jest stabilizowany.

4.1.2 Stabilizacja mocy kotła

Układ stabilizacji mocy kotła w trybie pracy AUTO wpływa na prędkość posuwu rusztu. Prędkość posuwu jest dobierana tak aby uzyskać zadaną przez operatora moc kotła. Grubość warstwy wegla musi być wstepnie dopasowana do zadanej mocy kotła.

W trybie MANUAL moc kotła nie jest stabilizowana. Prędkość posuwu rusztu jest ręcznie ustawiana przez operatora.

4.1.3. Stabilizacja podciśnienia w komorze spalania

Stabilizacja podciśnienia w komorze spalania realizowana jest za pomocą klap przed wentylatorem wyciągowym. W trybie AUTO stopień otwarcia klapy jest dobierany automatycznie tak aby uzyskać stałą wartość podciśnienia w komorze paleniskowej. W trybie MANUAL utrzymywana jest stała moc wentylatora wyciagowego niezależnie od

W trybie MANUAL utrzymywana jest stała moc wentylatora wyciągowego niezależnie od wartości podciśnienia w komorze paleniskowej.

4.1.4 Stabilizacja ciśnienia podmuchowe

Stabilizacja ciśnienia podmuchowego realizowana jest za pomocą klap przed wentylatorem podmuchowym. W trybie AUTO stopień otwarcia klapy jest dobierany automatycznie tak aby uzyskać stałą wartość ciśnienia podmuchowego.

W trybie MANUAL utrzymywana jest stała moc wentylatora podmuchowego niezależnie od wartości ciśnienia podmuchu.

4.2 Blokady kotłowe

System sterowania wyłączy awaryjnie kocioł na podstawie przekroczenia dopuszczalnych wartości następujących pomiarów:

- przekroczenia minimalnego przepływu wody przez kocioł
- przekroczenia minimalnego ciśnienia wody przepływającej przez kocioł
- przekroczenia maksymalnej temperatury wody wyjściowej

W przypadku przekroczenia dopuszczalnej wartości kontrolowanego parametru nastąpi samoczynne odstawienie kotła. Odstawienie kotła polega na wyłączeniu wentylatorów podmuchowych i powietrza wtórnego oraz włączeniu sygnalizacji alarmowej.

4.3 Blokady wzajemne pracy urządzeń

System blokad wzajemnych obejmuje pracę następujących urządzeń

Klucz 1

- wentylator wyciągowy
- wentylator podmuchowy
- wentylator powietrza wtórnego
- napęd rusztu lewego
- napęd rusztu prawego

Klucz 2

- pompa mieszająca mała
- pompa mieszająca duża

Klucz 3

- odżużlacz
- podajnik ślimakowy
- dozownik celkowy

4.3.1 Blokada wentylatora podmuchu od wentylatora wyciągowego

Praca wentylatorów wyciągowych jest niezbędna do załączenia wentylatorów podmuchowych oraz powietrza wtórnego. W sytuacji wyłączenia się choć jednego wentylatora wyciągowego następuje równoczesne wyłączenie wentylatorów podmuchu i powietrza wtórnego. Ponowne załączenie wentylatorów podmuchu i powietrza wtórnego będzie możliwe po uprzednim uruchomieniu wentylatorów wyciągowych.

4.3.2 Blokada dozownika celkowego od podajnika ślimakowego

Praca dozownika celkowego jest możliwa przy załączonym podajniku ślimakowym. Wyłączenie podajnika powoduje wyłączenie dozownika celkowego. Ponowne załączenie dozownika jest możliwe po uprzednim załączeniu podajnika ślimakowego.

4.3.3 Blokada podajnika ślimakowego od odżużlacza

Praca podajnika ślimakowego jest możliwa przy załączonym odżużlaczu. Wyłączenie odżużlacza powoduje wyłączenie podajnika ślimakowego. Ponowne załączenie podajnika jest możliwe po uprzednim załączeniu odżuzlacza.

4.3.4 Blokada od kluczy zezwalających na pracę urządzeń.

Niezależnie od blokad wzajemnych w systemie istnieją klucze sprzętowe zezwalające na pracę z komputera lub na sterowanie lokalne. Zezwolenie za pomocą klucza sprzętowego jest niezbędne do podjęcia sterowania z sterownika.

Klucz nr.1 zezwala na sterowanie następujących urządzeń:

- wentylatory wyciągowe
- wentylatory podmuchowe
- wentylatory powietrza wtórnego
- napęd rusztu lewego
- napęd rusztu prawego

Klucz nr.2 zezwala na pracę następujących urządzeń:

- pompa mieszająca mała

- pompa mieszająca duża

Klucz nr.3 zezwala na pracę następujących urządzeń:

- odżużlacze

- podajniki ślimakowe
- dozowniki celkowe

5.0 Zestawienie sygnałów obiektowych kotła 1

5.1.	5.1.1 Zestawienie analogowych sygnałów wejściowych					
Nr	Nazwa	Definicja sygnału				
	symboliczna					
1	FI_101	Przepływ wody przez K1				
2	FI_102	Przepływ wody w gałęzi				
		mieszającej				
3	PR-103	Ciśnienie wody przed K1				
4	PR_107	Ciśnienie wody za K1				
5	PR_108	Ciśnienie wody w kolektorze				
		tłoczącym pomp mieszających				
6	T_117_9	Temp. spalin przed				
		podgrzewaczami wody str. L				
7	T_117_10	Temp. spalin przed				
		podgrzewaczami wody str. p				
8	T_117_11	Temp. spalin między				
		podgrzewaczami wody str. L				
9	T_117_12	Temp. spalin między				
		podgrzewaczami wody str. P				
10	T_117_13	Temp. w komorze spalania L				
11	T_117_14	Temp. w komorze spalania P				
12	PR_pod_L	Ciśnienie podmuchu str. L				
13	PR_pod_P	Ciśnienie podmuchu str. P				
14	PR_113_1	Podciśnienie w komorze spalania				
		str. L				
15	PR_113_2	Podciśnienie w komorze spalania				
		str. P				
16	AR_119_1	Zawartość tlenu w spalinach				
		str. L				
17	AR_119_2	Zawartość tlenu w spalinach				
		str. P				
18	T_105	Temperatura wody przed K1				
19	T_106	Temperatura wody za K1				
20	T_117_7	Temp. pow. za podgrzewaczem				
		powietrza wtórnego str. L				
21	T_117_8	Temp. pow. za podgrzewaczem				
		powietrza wtórnego str. P				
22	T_117_1	Temp. spalin przed wentylatorem				
		wyciągowym str. L				

23	T_117_2	Temp. spalin przed wentylatorem			
2.4	T 115 0	wyciągowym str. P			
24	T_117_3	Temp. spalin za podgrzewaczem			
25	T 117 4	powietrza str. L			
25	1_11/_4	lemp. spalin za podgrzewaczem			
F 1 (17 •7 •	1	
5.1.2	Z Zes	stawienie analogowych sygna	iow wyjsci	owych	I
Nr	Nazwa	Definicja sygnału			
26	RUS7T I	sterowanie obrotów rusztu. I			
20	RUSZT_L	sterowanie obrotów rusztu P			
28	ODZ L	sterowanie obrotów odużlacza L			
29	ODZ P	sterowanie obrotów odużlacza P			
30	SLIMAK L	sterowanie obrotów ślimaka L			
31	SLIMAK P	sterowanie obrotów ślimaka P			
513		stawienie dwustanowych sygi	nałów weiś	ciowych	
Nr	Nazwa	Definicia svonahu			
111	symboliczna	Denneja sygnatu			
32	KLUCZ 1	Stan klucza 1 – wentylatory			
33	KLUCZ_2	Stan klucza 2 – pompy			
34	KLUCZ_3	Stan klucza 3 – odżużlacze			
35	ZAN_RSK1	Zanik zasilania RSK1			
36	W_SP_L	Wentylator spalin L praca			
37	W_SP_P	Wentylator spalin P praca			
38	W_P_L	Wentylator podmuchu L praca			
39	W_P_P	Wentylator podmuchu P praca			
40	W_PW_L	Wentylator pow.wtrórn. L praca			
41	W_PW_P	Wentylator pow.wtrórn. P praca			
42	PM_M	Pompa mieszająca mała praca			
43	PM_D	Pompa mieszająca duża praca			
44	RUSZ_L	Ruszt L praca			
45	RUSZ_P	Ruszt P praca			
46	ODZ_L	Odżużlacz L praca			
47	ODZ_P	Odżużlacz P praca			
48	PRZE_S_L	Przenośnik ślimakowy L praca			
49	PRZE_S_P	Przenośnik ślimakowy P praca			
50	DOZ_C_L	Dozownik celkowy L praca			
51	DOZ_C_P	Dozownik celkowy P praca			
52	ZA_ZK_O	Zasuwa za kotłem otwarta			
53	ZA_ZK_Z	Zasuwa za kotłem zamknięta			
54	ZA_PK_O	Zasuwa przed kotłem otwarta			
55	ZA_PK_Z	Zasuwa przed kotłem zamknięta			
56	PO_6				
57	AW_OD_LP	Awaria odżużlaczy LP			
58	AW_SL_LP	Awaria podajników ślimak. LP			
59	KWS_L_Z	Klapa went. spalin zamknięta			
60	KWS_P_Z	Klapa went. spalin otwarta			

61	KWP_L_Z	Klapa went. podmuch. zamknięt.		
62	KWP_P_Z	Klapa went. podmuch otwarta		
63	KAS_BUCZ	Kasowanie buczka		
64	AW_RU_L	Awaria rusztu L		
65	AW_RU_P	Awaria rusztu P		

5.1.	4 <u>Ze</u>	<u>stawienie dwustanowych syg</u>	<u>nałów wyjś</u>	<u>ciowych</u>	
Nr	Nazwa	Definicja sygnału			
66	symboliczna	Diskada labar 1			
60	KLC_I	Blokada klucz 1			
6/	KLC_2	BIOKAda KIUCZ 2			
68	KLC_3	blokada klucz 3			
69	WE_SP_L	Wentylator spalin L			
70	WE_SP_P	Wentylator spalin P			
71	WE_PO_L	Wentylator podmuchu L			
72	WE_PO_P	Wentylator podmuchu P			
73	WE_PW_L	Went. pow. wtornego L			
74	WE_PW_P	Went. pow. wtornego P			
75	POM_M	Pompa mieszająca mała			
76	POM_D	Pompa mieszająca duża			
77	RUSZT_LN	Ruszt lewy			
78	RUSZT_PN	Ruszt prawy			
79	ODZU_L	Odżużlacz lewy			
80	ODZU_P	Odżużlacz prawy			
81	PRZ_SL_L	Przenośnik ślimakowy lewy			
82	PRZ_SL_P	Przenośnik ślimakowy prawy			
83	DOZ_CE_L	Dozownik celkowy lewy			
84	DOZ_CE_P	Dozownik celkowy prawy			
85	ZAS_PK_O	Zasuwa przed kotłem otwieraj			
86	ZAS_PK_Z	Zasuwa przed kotłem zamykaj			
87	ZAS_ZK_O	Zasuwa za kotłem otwieraj			
88	ZAS_ZK_Z	Zasuwa za kotłem zamykaj			
89	ZAW_M_O	Zawór mieszający otwieraj			
90	ZAW_M_Z	Zawór mieszający zamykaj			
91	RUSZT_SL	Ruszt lewy			
92	RUSZT_SP	Ruszt prawy			
93	KWS_L_OT	Klapa went. spalin L otwieraj			
94	KWS_L_ZA	Klapa went. spalin L zamykaj			
95	KWS_P_OT	Klapa went. spalin P otwieraj			
96	KWS_P_ZA	Klapa went. spalin P zamykaj			
97	KWP L OT	Klapa went. podmuch L otwieraj			
98	KWP L ZA	Klapa went. podmuch L zamykaj			
99	KWP P OT	Klapa went. podmuch P otwieraj			
100	KWP P ZA	Klapa went. podmuch P zamykaj			
101	BUCZEK 1				
102	BUCZEK 2				
103	BUCZEK 3				
104	BLOKADA				

5.2 Zestawienie sygnałów obiektowych kotła 2

5.2.1	Wejściow	we sygnały dwustanowe
REJESTR	NAZWA	OPIS
RD1	KLUCZ_1	Sprzętowy Klucz Wentylatory
RD2	KLUCZ_2	Sprzętowy Klucz Pompy
RD3	KLUCZ_3	Sprzętowy Klucz Odżużlacze
RD4	ZAN_RSK2	Sygnał zaniku napięcia
RD5	W_SP_L	Wentylator spalin strona lewa
RD6	W_SP_P	Wentylator spalin strona prawa
RD7	W_P_L	Wentylator powietrza strona lewa
RD8	W_P_P	Wentylator powietrza strona prawa
RD9	W_PW_L	Wentylator powietrza wtórnego strona lewa
RD10	W_PW_P	Wentylator powietrza wtórnego strona prawa
RD11	PM_M	Pompa mieszająca mała
RD12	PM_D	Pompa mieszająca duża
RD13	RUSZ_L	Ruszt lewy
RD14	RUSZ_P	Ruszt prawy
RD15	ODZ_L	Odżużlacz strona lewa
RD16	ODZ_P	Odżużlacz strona prawa
RD17	PRZE_S_L	Przenośnik ślimakowy strona lewa
RD18	PRZE_S_P	Przenośnik ślimakowy strona prawa
RD19	DOZ_C_L	Dozownik celkowy lewy
RD20	DOZ_C_P	Dozownik celkowy prawy
RD21	ZA_ZK_O	Zasuwa za kotłem otwarta
RD22	ZA_ZK_Z	Zasuwa za kotłem zamknięta
RD23	ZA_PK_O	Zasuwa przed kotłem otwarta
RD24	ZA_PK_Z	Zasuwa przed kotłem zamknieta
RD25	PO_x	Pompa obiegowa nr.x
RD26	AW_OD_LP	Awaria odżużlaczy lewy i prawy
RD27	AW_SL_LP	Awaria przenośnika ślimakoweych lewy i prawy
RD28		
RD29		
RD30		
RD31		
RD32	KAS_BUCZ	Kasowanie buczka
RD33	AW_R_L	Awaria ruszt lewy
RD34	AW_R_P	Awaria ruszt prawy

5.2.2 Wyjściowe sygnały dwustanowe				
REJESTR	NAZWA	OPIS		
RD101	KLC 1	Programowy klucz wentylatory		
RD102	KLC 2	Programowy klucz pompy		
RD103	KLC 3	Programowy klucz odżużlacze		
RD104				
RD105	WE SP L	Wentylator spalin strona lewa		
RD106	WE SP P	Wentylator spalin strona prawa		
RD107	WE PO L	Wentylator powietrza strona lewa		
RD108	WE PO P	Wentylator powietrza strona prawa		
RD109	WE PW L	Wentylator powietrza wtórnego strona lewa		
RD110	WE PW P	Wentylator powietrza wtórnego strona prawa		
RD111	POM M	Pompa mieszająca mała		
RD112	POM D	Pompa mieszająca duża		
RD113	RUSZT SL	Ruszt strona lewa		
RD114	RUSZT SP	Ruszt strona prawa		
RD115	ODZU L	Odżużlacz strona lewa		
RD116	ODZU P	Odżużlacz strona prawa		
RD117	PRZ SL L	Przenośnik ślimakowy strona lewa		
RD118	PRZ SL P	Przenośnik ślimakowy strona prawa		
RD119	DOZ CE L	Dozownik celkowy strona lewa		
RD120	DOZ CE P	Dozownik celkowy strona prawa		
RD121				
RD122				
RD123				
RD124				
RD125	ZAW M O	Zawór regulacyjny podmieszania otwieranie		
RD126	ZAW M Z	Zawór regulacyjny podmieszania zamykanie		
RD127				
RD128				
RD129				
RD130				
RD131				
RD132				
RD133				
RD134				
RD134				
RD135				
RD136				
RD137	BUCZEK 1	Buczek 1		
RD138	BUCZEK 2	Buczek 2		
RD139	BLOKADA	Blokada		
RD140				
RD141	AL. NAPE	Alarm od napedów		

RD142	ALOD_S	Alarm od odżużlaczy
RD143	ALPOMPY	Alarm pompy

5.2.3	Sygnały	analogowe wejściowe
REJESTR	NAZWA	OPIS
RA1	FI 201	Przepływ wody przez K2
RA2	FI 202	Przepływ wody w gałezi mieszającej
RA3	PR 203	Ciśnienie wody przed K2
RA4	PR 207	Ciśnienie wody za K2
RA5	PR_208	Ciśnienie wody w kolektorze tłoczącym pomp mieszających
RA6	T_217_9	Temperatura spalin przed podgrzewaczami strona lewa
RA7	T_217_10	Temperatura spalin przed podgrzewaczami strona prawa
RA8	T_217_11	Temperatura spalin między podgrzewaczami strona lewa
RA9	T_217_12	Temperatura spalin między podgrzewaczami strona prawa
RA10	T_217_13	Temperatura w komorze spalania strona lewa
RA11	T_217_14	Temperatura w komorze spalania strona prawa
RA12		
RA13	PR_pod_L	Ciśnienie podmuchu strona lewa
RA14	PR_pod_P	Ciśnienie podmuchu strona prawa
RA15	PR_213_1	Podciśnienie w komorze spalania strona lewa
RA16	PR_213_2	Podciśnienie w komorze spalania strona prawa
RA17	AR_219_1	Zawartość tlenu w spalinach strona lewa
RA18	AR_219_2	Zawartość tlenu w spalinach strona prawa
RA19	T_217_1	Temperatura spalin przed wentylatorem spalin strona lewa
RA20	T_217_2	Temperatura spalin przed wentylatorem spalin strona prawa
RA21	T_220_1	Temperatura spalin
RA22	T_220_2	Temperatura spalin
RA23	I_PO	Prąd pompy obiegowej
RA24	P_RSK	Moc czynna RSK
RA25	P_W_SP_L	Moc czynna wentylatora spalin strona lewa
RA26	P_W_SP_P	Moc czynna wentylatora spalin strona prawa
RA27	I_W_P_L	Prąd wentylatora powietrza strona lewa
RA28	I_W_P_P	Prąd wentylatora powietrza strona prawa
RA29	T_SP_K	Temperatura spalin w kominie
RA30		
RA31		
RA32		
RA33	T_205	Temperatura wody przed K2
RA34	T_206	Temperatura wody za K2
RA35	T_217_7	Temperatura powietrza za podgrzewaczem powietrza wtórnego
		strona lewa
RA36	T_217_8	Temperatura powietrza za podgrzewaczem powietrza wtórnego
		strona prawa
RA37		
RA38		
RA39	T 217 3	Temperatura spalin za podgrzewaczem powietrza strona lewa

RA40	T_217_4	Temperatura spalin za podgrzewaczem powietrza strona prawa
RA41		
RA42		
RA43		
RA44		
RA45		
RA46		
RA47		
RA48		

5.2.4	5.2.4 Sygnały analogowe wyjściowe					
REJESTR	NAZWA	OPIS				
RA61	RUSZT_L	Sterowanie falownika silnika rusztu strona lewa				
RA62	RUSZT_P	Sterowanie falownika silnika rusztu strona prawa				
RA63	ODZ_L	Sterowanie falownika silnika odżużlacza strona lewa				
RA64	ODZ_P	Sterowanie falownika silnika odżużlacza strona prawa				
RA65	SLI_L	Sterowanie falownika silnika przenośnika ślimakowego strona				
		lewa				
RA66	SLI_P	Sterowanie falownika silnika przenośnika ślimakowego strona				
		prawa				
RA67	PODMU_L	Sterowanie falownika wentylatora podmuchowego lewego				
RA68	PODMU_P	Sterowanie falownika wentylatora podmuchowego prawego				
RA69	SPAL_L	Sterowanie falownika wentylatora wyciągowego lewego				
RA70	SPAL_P	Sterowanie falownika wentylatora wyciągowego prawego				

5.3 Zestawienie sygnałów obiektowych kotła 3

5.3.1 Sygnały wejściowe dwustanowe				
REJESTR	NAZWA	OPIS		
RD1	KLUCZ_1	Sprzętowy Klucz Wentylatory		
RD2	KLUCZ_2	Sprzętowy Klucz Pompy		
RD3	KLUCZ_3	Sprzętowy Klucz Odżużlacze		
RD4	ZAN_RSK3	Sygnał zaniku napięcia		
RD5				
RD6	W_SP_L	Wentylator spalin strona lewa		
RD7	W_SP_P	Wentylator spalin strona prawa		
RD8	W_P_L	Wentylator powietrza strona lewa		
RD9	W_P_P	Wentylator powietrza strona prawa		
RD10	W_PW_L	Wentylator powietrza wtórnego strona lewa		
RD11	W_PW_P	Wentylator powietrza wtórnegostrona prawa		
RD12	PM_M	Pompa mieszająca mała		
RD13	PM_D	Pompa mieszająca duża		
RD14	ODZ_L	Odżużlacz strona lewa		
RD15	ODZ_P	Odżużlacz strona prawa		
RD16	PRZE_S_L	Przenośnik ślimakowy strona lewa		
RD17	PRZE_S_P	Przenośnik ślimakowy strona prawa		
RD18	ZA_PK_O	Zasuwa przed kotłem otwarta		
RD19	ZA_PK_Z	Zasuwa przed kotłem zamknieta		
RD20	ZA_ZK_O	Zasuwa za kotłem otwarta		
RD21	ZA_ZK_Z	Zasuwa za kotłem zamknięta		
RD22	PO_6	Pompa obiegowa nr.6		
RD23	AW_R_L	Awaria ruszt lewy		
RD24	AW_R_P	Awaria ruszt prawy		
RD25	AW_OD_LP	Awaria odżużlaczy lewy i prawy		
RD26	AW_SL_LP	Awaria przenośnika ślimakoweych lewy i prawy		
RD27	KWS_L_Z	Kierownica wentylatora spalin strona lewa zamknieta		
RD28	KWS_P_Z	Kierownica wentylatora spalin strona prawa zamknieta		
RD29	KWP_L_Z	Kierownica wentylatora powietrza strona lewa zamknieta		
RD30	KWP_P_Z	Kierownica wentylatora powietrza strona prawa zamknieta		
RD31	DEBLOKA	Sygnalizacja wyłączenia blokady		
	D			
RD32				

5.3.2 Sygnały wyjściowe dwustanowe			
REJESTR	NAZWA	OPIS	
RD101	KLC_1	Programowy klucz wentylatory	
RD102	KLC_2	Programowy klucz pompy	
RD103	KLC_3	Programowy klucz odżużlacze	
RD104			
RD105	WE_SP_L	Wentylator spalin strona lewa	
RD106	WE_SP_P	Wentylator spalin strona prawa	
RD107	WE_PO_L	Wentylator powietrza strona lewa	
RD108	WE_PO_P	Wentylator powietrza strona prawa	
RD109	WE_PW_L	Wentylator powietrza wtórnego strona lewa	
RD110	WE_PW_P	Wentylator powietrza wtórnegostrona prawa	
RD111	POM_M	Pompa mieszająca mała	
RD112	POM_D	Pompa mieszająca duża	
RD113	ODZU_L	Odżużlacz strona lewa	
RD114	ODZU_P	Odżużlacz strona prawa	
RD115	PRZ_SL_L	Przenośnik ślimakowy strona lewa	
RD116	PRZ_SL_P	Przenośnik ślimakowy strona prawa	
RD117	ZAS_PK_O	Zasuwa przed kotłem otwierania	
RD118	ZAS_PK_Z	Zasuwa przed kotłem zamkanie	
RD119	ZAS_ZK_O	Zasuwa za kotłem otwieranie	
RD120	ZAS_ZK_Z	Zasuwa za kotłem zamkanie	
RD121	ZAW_M_O	Zawór regulacyjnypodmieszania otwieranie	
RD122	ZAW_M_Z	Zawór regulacyjnypodmieszania zamykanie	
RD123	POM_O_W	Pompa obiegowa nr 6 wyłączanie	
RD124	POM_O_Z	Pompa obiegowa nr 6 załączanie	
RD125	KWS_L_OT	Kierownica wentylatora spalin strona lewa otwieranie	
RD126	KWS_L_ZA	Kierownica wentylatora spalin strona lewa zamykanie	
RD127	KWS_P_OT	Kierownica wentylatora spalin strona prawa otwieranie	
RD128	KWS_P_ZA	Kierownica wentylatora spalin strona prawa zamykanie	
RD129	KWP_L_OT	Kierownica wentylatora powietrza strona lewa otwieranie	
RD130	KWP_L_ZA	Kierownica wentylatora powietrza strona lewa zamykanie	
RD131	KWP_P_OT	Kierownica wentylatora powietrza strona prawa otwieranie	
RD132	KWP_P_ZA	Kierownica wentylatora powietrza strona prawa zamykanie	
RD133	BUCZEK_1	Buczek 1	
RD134	BUCZEK_2	Buczek 2	
RD134	BLOKADA	Blokada	

5.3.3.	Sygnały	wejściowe analogowe	
REJESTR	NAZWA	OPIS	
RA1	FI_301	Przepływ wody przez K3	
RA2	FI_302	Przepływ wody w gałezi mieszającej	
RA3	PR_303	Ciśnienie wody przed K3	
RA4	PR_307	Ciśnienie wody za K3	
RA5	PR_308	Ciśnienie wody w kolektorze tłoczącym pomp mieszających	
RA6	AR_319_1	Zawartość tlenu w spalinach strona lewa	
RA7	AR_319_2	Zawartość tlenu w spalinach strona prawa	
RA8	PR_313_1	Podciśnienie w komorze spalania strona lewa	
RA9	PR_313_2	Podciśnienie w komorze spalania strona prawa	
RA10	T_317_13	Temperatura w komorze spalania strona lewa	
RA11	T_317_14	Temperatura w komorze spalania strona prawa	
RA12			
RA13	PR_103	Ciśnienie wody przed K3	
RA14			
RA15	PR_203	Ciśnienie wody przed K2	
RA16	T_317_1	Temperatura spalin przed wentylatorem spalin strona lewa	
RA17	T_317_2	Temperatura spalin przed wentylatorem spalin strona prawa	
RA18			
RA19			
RA20			
RA21			
RA22			
RA23	I_PO	Prąd pompy obiegowej	
RA24	P_RSK	Moc czynna RSK	
RA25	P_W_SP_L	Moc czynna wentylatora spalin strona lewa	
RA26	P_W_SP_P	Moc czynna wentylatora spalin strona prawa	
RA27	I_W_P_L	Prąd wentylatora powietrza strona lewa	
RA28	I_W_P_P	Prąd wentylatora powietrza strona prawa	
RA29			
RA30			
RA31			
RA32			
RA33	T_317_7	Temperatura powietrza za podgrzewaczem powietrza wtórnego strona lewa	
RA34	T_317_8	Temperatura powietrza za podgrzewaczem powietrza wtórnego strona prawa	
RA35	T 105	Temperatura wody przed K1	
RA36	T 205	Temperatura wody przed K2	
RA37	T 305	Temperatura wody przed K3	
RA38	T 106	Temperatura wody za K1	
RA39	T 306	Temperatura wody za K3	
RA40			
RA41			
RA42	T 317 3	Temperatura spalin za podgrzewaczem powietrza strona lewa	
RA43	T_317_4	Temperatura spalin za podgrzewaczem powietrza strona prawa	

RA44	T_206	Temperatura wody za K2
RA45	T_317_11	Temperatura spalin między podgrzewaczami strona lewa
RA46	T_317_12	Temperatura spalin między podgrzewaczami strona prawa
RA47	T_317_9	Temperatura spalin przed podgrzewaczami strona lewa
RA48	T_317_10	Temperatura spalin przed podgrzewaczami strona prawa

5.3.4 Sygnały wyjściowe analogowe			
REJESTR	NAZWA	OPIS	
RA61	RUSZT_L	Prędkość rusztu strona lewa	
RA62	RUSZT_P	Prędkość rusztu strona prawa	
RA63	ODZ_L	Prędkość odżużlacza strona lewa	
RA64	ODZ_P	Prędkość odżużlacza strona prawa	
RA65	SLI_L	Prędkość przenośnika ślimakowego strona lewa	
RA66	SLI_P	Prędkość przenośnika ślimakowego strona prawa	

6. Sterowanie kotłem za pomocą stacji opreratorskiej.

Sterowanie kotłem odbywa się za pomocą stacji operatorskiej zainstalowanej w komputerze. Wszystkie operacje odbywają się z poziomu ekranu komputera. Operator posiada możliwość:

- podglądu aktualnych wartości pomiarowych
- wprowadzania nowych punktów pracy
- podglądu sygnalizacji załączenia urządzeń wykonawczych
- załączania / wyłączania poszczególnych podzespołów.
- załączania / wyłączania regulatorów urządzeń wykonawczych.

Wszystkie informacje przedstawianie są na tle symbolicznego rysunku kotła. Rysunek przedstawia widok strony synoptycznej kotła wodnego WR25.

6.1 Załączanie wyłączanie urządzeń

Każdy sygnał dwustanowy odzwierciedlający pracę urządzeńa może znajdować się w jednym z dwóch ustawień: OFF, ON. Stan OFF jest umownym stanem nieaktywnym (0), stan ON jest umownym stanem aktywnym (1). Stan sygnału dwustanowego na ekranie komputera sygnalizowany jest za pomocą odpowiedniego koloru lub rysunku. W czasie definiowania punktu na ekranie określa się jaki kolor (rysunek) reprezentuje stan OFF (0) i ON (1).

Dodatkowo stan sygnału może być opisany tekstowo OFF (0), ON (1). Opis tekstowy wykorzystywany jest przy edycji stanu sygnału dwustanowego. Edycja umożliwia zmianę stanu sygnału dwustanowego na przeciwny.

W celu zmiany stanu sygnału dwustanowego należy wejść kursorem myszy w pole oznaczone kwadratem . Następnie należy kliknać lewym klawiszem myszy na wybranym polu. Nastąpi otworzenie pola dialogowego. Aktualny stan sygnału sygnalizowany jest poprzez optyczne uniesienie klawisza ekranowego do góry z jednoczesnym jego

podświetleniem. W celu zmiany stanu należy najechać kursorem myszy na pole ze stanem przeciwnym i kliknąć lewym klawiszem myszy. Następnie kursor myszy ustawiamy w pole **DOBRZE** okna edycyjnego i klikamy lewym klawiszem myszy. Pole edycyjne zamyka się. Po kilku sekundach nowy stan powinien się pojawić w edytowanym polu. Zmiana stanu sygnalizowana jest kolorem. Stanowi logicznemu "zero" (OFF) odpowiada kolor szary, stanowi logicznemu "jeden" (ON) odpowiada kolor zielony lub czerwony.(zależnie od typu sygnału).

6.2 Wprowadzanie punktów pracy

Każdy sygnał analogowy odzwierciedlający stan pracy urządzenia posiada wartość liczbową. Na ekranie wyświetlana jest liczba reprezentująca dany sygnał. Sygnał analogowy może być również wyświetlany w postaci słupka o wymiarze proporcjonalnym do wartości sygnału analogowego. Sygnał wyświetlany w postaci liczby może być poddany edycji w celu zmiany wartości przez operatora. Edycji mogą być poddane sygnały które zostały wytypowane do zmiany przez operatora. W przypadku próby edycji sygnału nie przeznaczonego do edycji , działanie będzie nieskuteczne.

W celu wprowadzenia nowej wartości parametru należy wejść kursorem myszy w jasnozielone pole wyświetlanej wartości. Następnie należy kliknać lewym klawiszem myszy na wybranym polu. Nastąpi otworzenie pola dialogowego. Kursor myszy należy ustawić wewnątrz pola z wartością parametru i ponownie kliknąć lewym klawiszem myszy. W polu parametru pojawi się pionowy kursor. W celu

wyprowadzenia nowej wartości należy wykasować wartość dotychczasową. W tym celu klawiszem BACKSPACE kasujemy dotychczasowe wartości , a następnie z klawiatury komputera wprowadzamy nową wartość. Po zakończeniu edycji należy nacisnąć klawisz ENTER na klawiaturze komputera. Następnie kursor myszy ustawiamy w pole DOBRZE okna edycyjnego i klikamy lewym klawiszem myszy. Pole edycyjne zamyka się. Po kilku sekundach nowa wartość powinna się pojawić w polu zmienianego parametru.

6.3 Sterowanie wentylatora wyciagowego

Na obiekcie są zainstalowane dwa wentylatory wyciągowe. Obsługa wentylatora strona lewa i prawa jest identyczna. Blok sterowania wentylatora wyciągowego umożliwia :

- załączenie / wyłączenie wentylatora

- kontrolę załączenia wentylatora
- odczyt poboru mocy przez silnik wentylatora
- zadanie poboru mocy silnika wentylatora
- załączenie / wyłączenie regulatora podciśnienia w komorze paleniskowej

W przypadku nie podjęcia pracy przez silnik wentylatora w ciągu 3 sek. od momentu wydania polecenia ZAŁĄCZ sygnał ten zostanie automatycznie skasowany.

W trybie pracy AUTO system sterowania dąży do wyrównania mocy wentylatorów. wyciągowych

W trybie pracy AUTO (regulacja ciśnienia w komorze paleniskowej) wartość zadana mocy jest wyznaczana przez regulator podciśnienia. Wartość podciśnienia jest zadawana w polu regulatora podciśnienia.

W trybie MANUAL (regulacja stałej mocy wentylatora) wartość mocy jest zadawana przez operatora. Wartość podciśnienia nie jest kontrolowana.

W trybie pracy Z BLOKADAMI oba wentylatory wyciągowe muszą pracować aby było możliwe załączenie wentylatorów podmuchowych i powietrza wtórnego.

Kolor żółty w polu kwadratowym oznacza załączenie regulatora podciśnienia. Kolor szary w polu kwadratowym oznacza wyłączenie regulatora podciśnienia Kolor zielony w polu kwadratowym oznacza polecenie pracy napędu Kolor czarny w polu kwadratowym oznacza polecenie wyłączenia napędu Kolor zielony w polu okrągłym oznacza potwierdzenie załączenia napędu Kolor czarny w polu okrągłym oznacza potwierdzenie wyłączenia napędu

6.4 Sterowanie wentylatora podmuchowego

Na obiekcie są zainstalowane dwa wentylatory podmuchowe. Obsługa wentylatora strona lewa i prawa jest identyczna. Blok sterowania wentylatora podmuchowego umożliwia :

- załączenie / wyłączenie wentylatora

- kontrolę załączenia wentylatora
- odczyt poboru mocy przez silnik wentylatora
- zadanie poboru mocy silnika wentylatora
- załączenie / wyłączenie regulatora ciśnienia powietrza podmuchowego

W przypadku nie podjęcia pracy przez silnik wentylatora w ciągu 3 sek. od momentu wydania polecenia ZAŁĄCZ sygnał ten zostanie automatycznie skasowany.

W trybie pracy AUTO (regulacja ciśnienia powietrza podmuchowego) wartość zadana mocy jest wyznaczana przez regulator ciśnienia. Wartość ciśnienia jest zadawana w polu regulatora ciśnienia podmuchu.

W trybie MANUAL (regulacja stałej mocy wentylatora) wartość mocy jest zadawana przez operatora. Wartość ciśnienia podmuchu nie jest kontrolowana.

W trybie pracy z regulacją zawartości wolnego tlenu w spalinach wartość ciśnienia powietrza podmuchu jest korygowana przez regulator tlenu.

Kolor żółty w polu kwadratowym oznacza załączenie regulatora ciśnienia. Kolor szary w polu kwadratowym oznacza wyłączenie regulatora ciśnienia Kolor zielony w polu kwadratowym oznacza polecenie pracy napędu Kolor czarny w polu kwadratowym oznacza polecenie wyłączenia napędu Kolor zielony w polu okrągłym oznacza potwierdzenie załączenia napędu Kolor czarny w polu okrągłym oznacza potwierdzenie wyłączenia napędu

6.5 Sterowanie wentylatora powietrza wtórnego

Na obiekcie są zainstalowane dwa wentylatory powietrza wtórnego. Obsługa wentylatora strona lewa i prawa jest identyczna. Blok sterowania wentylatora powietrza wtórnego umożliwia :

- załączenie / wyłączenie wentylatora

- kontrolę załączenia wentylatora

W przypadku nie podjęcia pracy przez silnik wentylatora w ciągu 3 sek. od momentu wydania polecenia ZAŁĄCZ sygnał ten zostanie automatycznie skasowany.

Kolor zielony w polu kwadratowym oznacza polecenie pracy napędu Kolor czarny w polu kwadratowym oznacza polecenie wyłączenia napędu Kolor zielony w polu okrągłym oznacza potwierdzenie załączenia napędu Kolor czarny w polu okrągłym oznacza potwierdzenie wyłączenia napędu

6.6 Sterowanie rusztów mechanicznych

Na obiekcie są zainstalowane dwa napędy rusztów. Obsługa napędów rusztów strona lewa i prawa jest identyczna. Blok sterowania umożliwia :

- załączenie / wyłączenie napędu rusztu

- kontrolę załączenia napędu rusztu
- zadanie prędkości posuwu taśmy rusztu

W przypadku nie podjęcia pracy przez silnik napędu rusztu w ciągu 3 sek. od momentu wydania polecenia ZAŁĄCZ sygnał ten zostanie automatycznie skasowany.

W trybie pracy MANUAL (wyłączony regulator mocy kotła) prędkość posuwu taśmy rusztu jest stała, zadana ręcznie przez operatora.

W trybie pracy AUTO (włączona regulacja mocy kotła) prędkość posuwu taśmy rusztu jest wyznaczana przez regulator mocy kotła.

W polu zadawania prędkości rusztu wpisuje się procent max. prędkości posuwu rusztu. Np. jeżeli 100%=150 mm/min to 63%=94.5 mm/min

W przypadku wystąpienia awarii pracy rusztu zapala się czerwone pole w obrysie symbolu rusztu. Sygnał ten jest wspólny dla obu rusztów. (Awaria choć jednego napędu sygnalizowana jest w obu polach rysunku rusztu)

Kolor zielony w polu kwadratowym oznacza polecenie pracy napędu Kolor czarny w polu kwadratowym oznacza polecenie wyłączenia napędu Kolor zielony w polu okrągłym oznacza potwierdzenie załączenia napędu Kolor czarny w polu okrągłym oznacza potwierdzenie wyłączenia napędu

6.7 Sterowanie odżużlaczy

Na obiekcie są zainstalowane dwa napędy odżużlaczy. Obsługa napędów odżużlaczy strona lewa i prawa jest identyczna. Blok sterowania umożliwia :

- załączenie / wyłączenie napędu odżużlacza

- kontrolę załączenia napędu odżużlacza
- zadanie prędkości posuwu taśmy odżużlacza

W przypadku nie podjęcia pracy przez silnik odżużlacza w ciągu 3 sek. od momentu wydania polecenia ZAŁĄCZ sygnał ten zostanie automatycznie skasowany.

Zadanie prędkości pracy odżużlacza polega na ręcznym wprowadzeniu przez operatora procentowego stopnia wysterowania falownika.

W przypadku wystąpienia awarii pracy napędu zapala się czerwone pole w obrysie symbolu odżużlacza. Sygnał ten jest wspólny dla obu odżużlaczy. (Awaria choć jednego napędu sygnalizowana jest w obu polach rysunku odżużlacza)

Kolor zielony w polu kwadratowym oznacza polecenie pracy napędu Kolor czarny w polu kwadratowym oznacza polecenie wyłączenia napędu Kolor zielony w polu okrągłym oznacza potwierdzenie załączenia napędu Kolor czarny w polu okrągłym oznacza potwierdzenie wyłączenia napędu

6.8 Sterowanie podajników ślimakowych

Na obiekcie są zainstalowane dwa napędy podajników ślimakowych. Obsługa napędów podajników ślimakowych strona lewa i prawa jest identyczna. Blok sterowania umożliwia :

- załączenie / wyłączenie napędu podajnika ślimakowego
- kontrolę załączenia napędu podajnika ślimakowego
- zadanie prędkości pracy podajnika ślimakowego

W przypadku nie podjęcia pracy przez silnik podajnika w ciągu 3 sek. od momentu wydania polecenia ZAŁĄCZ sygnał ten zostanie automatycznie skasowany.

Zadanie prędkości pracy podajnika ślimakowego polega na ręcznym wprowadzeniu przez operatora procentowego stopnia wysterowania falownika.

W przypadku wystąpienia awarii pracy napędu zapala się czerwone pole w obrysie symbolu podajnika ślimakowego. Sygnał ten jest wspólny dla obu podajników ślimakowych. (Awaria choć jednego napędu sygnalizowana jest w obu polach rysunku podajnika ślimakowego)

Praca podajnika ślimakowego w trybie pracy Z BLOKADAMI jest możliwa tylko przy załączonym odżużlaczu. Wyłączenie odżużlacza powoduje wyłączenie podajnika ślimakowego. W celu załączenia podajnika ślimakowego należy uprzednio załączyć odżużlacz.

Kolor zielony w polu kwadratowym oznacza polecenie pracy napędu Kolor czarny w polu kwadratowym oznacza polecenie wyłączenia napędu Kolor zielony w polu okrągłym oznacza potwierdzenie załączenia napędu Kolor czarny w polu okrągłym oznacza potwierdzenie wyłączenia napędu

6.9 Sterowanie dozowników celkowych

Na obiekcie są zainstalowane dwa napędy dozowników celkowych. Obsługa napędów dozowników celkowych strona lewa i prawa jest identyczna. Blok sterowania umożliwia :

- załączenie / wyłączenie napędu dozownika celkowego
- kontrolę załączenia napędu dozownika celkowego

W przypadku nie podjęcia pracy przez silnik podajnika w ciągu 3 sek. od momentu wydania polecenia ZAŁĄCZ sygnał ten zostanie automatycznie skasowany.

Praca dozownika celkowego w trybie pracy Z BLOKADAMI jest możliwa tylko przy załączonym podajniku ślimakowym. Wyłączenie podajnika ślimakowego powoduje wyłączenie dozownika celkowego. W celu załączenia dozownika celkowego należy uprzednio załączyć podajnik ślimakowy

Kolor zielony w polu kwadratowym oznacza polecenie pracy napędu Kolor czarny w polu kwadratowym oznacza polecenie wyłączenia napędu Kolor zielony w polu okrągłym oznacza potwierdzenie załączenia napędu Kolor czarny w polu okrągłym oznacza potwierdzenie wyłączenia napędu

6.10 Sterowanie pomp mieszających

Na obiekcie są zainstalowane dwie pompy w obwodzie mieszania. Pompy mają zróżnicowaną wydajność. Operator posiada nastepujace możliwości sterowania pompami: - automatyczne załączanie ilości pomp w zależności od przepływu podmieszania

- ręczne załączanie / wyłączanie pomp
- określanie wartości przepływów przy których następuje zmiana załączenia pomp
- określanie wartoścu histerezy przełączenia pomp

W trybie pracy MANUAL układu załączania pomp, operator może uruchomić dowolną konfiguracje pracy pomp.

W trybie pracy AUTO układu załączania pomp, konfiguracja załączenia jest zależna od bieżącego przepływu wody w obwodzie podmieszania. Operator może ustawić wartości progowe , przy których następuje przełączenie pomp. Kolejność załączania pomp przy rosnącym przepływie jest następująca:

- pompa mała
- pompa duża
- obie pompy

Należy podać próg przełączenia z pompy małej na dużą, oraz próg załączenia obu pomp. Dodatkowo określana jest histereza przełączenia w celu wyeliminowania częstych przełączeń w sytuacji gdy przepływ oscyluje wokół wartości progowej.

Kolor żółty w polu kwadratowym oznacza załączenie automatycznego załączania pomp Kolor szary w polu kwadratowym oznacza wyłączenie automatycznego załączania pomp Kolor zielony w polu kwadratowym oznacza polecenie pracy napędu Kolor czarny w polu kwadratowym oznacza polecenie wyłączenia napędu Kolor zielony w polu okrągłym oznacza potwierdzenie załączenia napędu Kolor czarny w polu okrągłym oznacza potwierdzenie wyłączenia napędu

6.11 Regulacja mocy kotła

Układ regulacji mocy kotła utrzymuje moc kotła na wartości zadanej przez operatora. Układ eliminuje wahania mocy związane z czynnikami zewnętrznymi. System wskazuje bieżącą moc kotła.

W trybie pracy MANUAL moc kotła zależy głównie od ustawionej prędkości posuwu taśmy rusztu.

W trybie pracy AUTO regulator dopasowuje aktualną prędkość posuwu , tak aby utrzymać zadaną wartość mocy kotła.

Kolor żółty w polu kwadratowym oznacza załączenie regulatora mocy kotła Kolor szary w polu kwadratowym oznacza wyłączenie regulatora mocy kotła

6.12 Regulacja podciśnienia w komorze paleniskowej

Układ regulacji podciśnienia w komorze paleniskowej utrzymuje wartość podciśnienia na stałej wartości zadanej przez operatora. W systemie zainstalowane są dwa niezależne regulatory (strona lewa i prawa). Regulator wyznacza moc wentylatora wyciągowego potrzebną do utrzymania podciśnienia.

W trybie pracy MANUAL wartość podciśnienia nie jest kontrolowana .

W trybie pracy AUTO regulator wyznacza chwilową moc wentylatora wyciągowego niezbędną do utrzymana zadanej wartości podciśnienia. Regulacja mocy wentylatora odbywa się za pomocą klap.

Kolor żółty w polu kwadratowym oznacza załączenie regulatora podciśnienia. Kolor szary w polu kwadratowym oznacza wyłączenie regulatora podciśnienia

6.13 Regulacja ciśnienia podmuchu

Układ regulacji ciśnienia podmuchu utrzymuje wartość ciśnienia na stałej wartości zadanej przez operatora. W systemie zainstalowane są dwa niezależne regulatory (strona lewa i prawa) Regulator wyznacza moc chwilową wentylatora podmuchowego potrzebną do utrzymania ciśnienia.

W trybie pracy MANUAL wartość ciśnienia nie jest kontrolowana .

W trybie pracy AUTO regulator wyznacza chwilową moc wentylatora podmuchowego niezbędną do utrzymana zadanej wartości ciśnienia. Regulacja mocy wentylatora odbywa się za pomocą klap.

Kolor żółty w polu kwadratowym oznacza załączenie regulatora ciśnienia. Kolor szary w polu kwadratowym oznacza wyłączenie regulatora ciśnienia

6.14 Regulacja przepływu wody przez kocioł

Układ regulacji przepływu wody przez kocioł utrzymuje przepływ wody zmieniając za pomocą zaworu regulacyjnego przepływ wody w obwodzie podmieszania. Do prawidłowej pracy regulatora wskazane jest załączenie automatyki wyboru pracy pomp mieszających.

W trybie pracy MANUAL układ utrzymuje przepływ wody w obwodzie podmieszania na stałej wartości ustawionej przez operatora.

W trybie pracy AUTO układ utrzymuje przepływ wody przez kocioł na stałej wartości zadanej przez operatora.

Kolor żółty w polu kwadratowym oznacza załączenie regulatora przepływu wody Kolor szary w polu kwadratowym oznacza wyłączenie regulatora przepływu wody

6.15 Pomiary temperatur

W obrębie kotła zostały zainstalowane punkty pomiaru temperatur. Rysunek przedstawia rozkład punktów pomiarowych.

7.1 Prezentacja zarejestrowanych danych w postaci wykresów .

Po wywołaniu ikony **WYKRESY** przedstawiony na rysunku.

na ekranie pojawi się przykładowy widok

Wyboru aktualnie wyświetlanych parametrów dokonuje się ikoną KARTOTEKA

Wykres uzyskany na ekranie można wydrukować ikoną DRUKARKA

Na jednym rysunku można jednorazowo wyświetlić cztery wykresy wartości analogowych oraz cztery wykresy wartości

dwustanowych.

Dla trybu prezentacji graficznej wykresów dostępne są ikony przedstawione na rysunku :

Do przeglądania wykresów służą ikony poniżej. Umożliwiają przesuwanie wykresu w lewo lub prawo z dużą lub małą szybkością , umożliwiają wybór podzakresu w osi X, i Y

7.1 Opcja wyboru zarejestrowanego parametru

W celu wybrania do prezentacji graficznej zarejestrowanych parametrów należy wybrać ikonę **KARTOTEKA**

<u>ا</u> ا	lybór re	jestracji	RA	
52 P11 ZB T11 CZAS_BIE 41_TI73 42_TI82 43_TI111 43_PI112	50 111 PI201 41_PI72 42_TI83 43_TI112	PI202 TYP_KAB1 41_TI71 NR_KROK7 42_PI81 43_TI113	ZB_PI1 NR_KROK6 41_TI72 42_TI81 42_PI82 43_PI111	•
				*
V D	obrze	🗙 Ar	uluj	

Wybór opcji następuje poprzez wejście kursorem w pole ikony, a następnie naciśnięcia lewego klawisza na myszce Na ekranie pojawi się spis nazw zarejestrowanych parametrów. Wyboru parametrów można dokonać w oknie ukazującym zarejestrowane parametry nachodząc kursorem na wyświetlaną nazwę , a następnie nacisnąć lewy klawisz na myszy. Zaakceptowania dokonanego wyboru należy dokonać ikoną **DOBRZE**

Wyjście z edycji bez wprowadzania nowego parametru należy dokonać ikoną **ANULUJ**.

Można jednorazowo wybrać cztery wykresy. Chcąc zmienić konfigurację uprzed0nio wybranych parametrów należy kursorem wejść na już wybrane nazwy parametrów i nacisnąć lewy

klawisz myszy. Nastąpi skasowanie wyboru. Następnie kursor należy przesunąć na nazwę parametru który chcemy wyświetlić i nacisnąć lewy klawisz myszy.

Po wybraniu parametrów do wyświetlania należy określić przedział czasowy, jaki będzie wyświetlany na ekranie. W

tym celu należy wejść kursorem na ikonę **SZEROKOŚĆ WYKRESU**, a następnie nacisnąć lewy klawisz myszy. Otworzy się okno "ZMIANA CZASU OSI X". Znacznik należy umieścić

kursorem przy żądanym zakresie czasu, a następnie zatwierdzić ikoną **DOBRZE**. Na ekranie pojawi się wykres narysowany w nowej skali czasu.

-	Zmiana czasu osi X	
	80min/dz. (X=4 godz.) lgodz/dz. (X=8 godz.) 2godz/dz. (X=16 godz.) 8godz/dz. (X=24 godz.) 4godz/dz. (X=32 godz.) 5godz/dz. (X=48 godz.) 24godz/dz. (X=7 dni)	
	🗸 Dobrze 🔀 Anuluj	

Po wybraniu skali czasu można ustawić skalę Y wyświetlanych wykresów. System przyjmuje jako wartości standardowe parametry ustawione na kartach wejściowych. Istnieje możliwość rozszerzenia lub zawężenia zakresu. W tym celu należy wejść kursorem w ikonę **WYSOKOŚĆ WYKRESU**, a następnie nacisnąć lewy klawisz na myszy. Otworzy się okno z nazwami wybranych uprzednio pomiarów. Kursorem należy wejść w okna wyświetlające zakresy wyświetlania, nacisnąć lewy klawisz myszy, klawiszem **BACKSPACE** wykasować dotychczasowa wartość, wpisać nową, i zamknąć okienko klawiszem **ENTER**. W analogiczny sposób należy wprowadzić oznaczenia jednostek fizycznych.

Po ustawieniu parametrów wykresu można ustawić kolory poszczególnych elementów rysunku. W tym celu należy wejść kursorem w ikonę, a następnie nacisnąć lewy klawisz myszy. Otworzy się okno umożliwiające edycję kolorów. Klikająć klawisze + poszczególnych elementów - zmienia się kolory poszczególnych elementów wykresu. Po ustawieniu kolorów edycję należy zakończyć ikoną **DOBRZE**. Na ekranie pojawi się wykres w ustawionej kolorystyce.

🗖 Zmiana skali osi Y				
TIC21				
300.000 Max oC. J.F.				
A.0000 Min				
PIC11B				
250.000 Max kPa J.F.				
0.00000 Min				
FQR23				
16000.0 Max m3/h J.F.				
0.00000 Min				
VXP13				
1000.00 Max m/h J.F.				
0.00000 Min				
🗸 Dobrze 🛛 🗙 Anuluj				

		hubei	e koloców wykresu
	_	ngeo.	r Notorow wgkrosa
-	+	0	Tło ekranu
-	+	0	Tło wykresu
-	+	15	Kolor osi XY
-	+	6	Kolor siatki 📃
E	+	15	Kolor X
	+	11	Wykres 1
-	+	12	Wykres 2
-	+	13	Wykres 3
E	+	14	Wykres 4
V Dobrze 🔪 🗶 Amuluj			

7.2 Opcja drukowania wykresu

W celu wydrukowania wyświetlonego wykresu należy wybrać ikonę **DRUKARKA**. Na ekranie pojawi się okno informujące o możliwości wydrukowania na drukarce lub zarejestrowaniu w pliku przygotowanym do wydruku w celu późniejszego wykorzystania.

Wybranie ikony **DRUKARKA** zainicjuje przygotowanie danych do wydruku a następnie przesłania ich na drukarkę.

U	• Di	rukowanie do pliku				
	<u>M</u> azwa pliku	Katalog:				
	*.PRN	C:NSS10NREJ				
	38_T163.PRN 38_T162.PRN ▲	▲ Bysk: C: ▼ Typ pliku: 1.√ *.PRN 2. *.*				
	🗸 Dobrze 🗙 Anu lu j					

Wybranie ikony DYSKIETKA zainicjuje przygotowanie danych do zapisania w pliku. Program zapyta się o nazwę pliku w którym ma umieścić dane do wydruku . Na ekranie pojawi się spis nazw zarejestrowanych parametrów. Wyboru parametru można dokonać wpisując z klawiatury do pola "Nazwa pliku" nazwę żądanego nachodząc kursorem parametru lub na wyświetlaną nazwę w oknie wyświetlającym

pliki, a następnie dwukrotne nacisnąć lewy klawisz na myszy. Zaakceptowania dokonanego wyboru należy dokonać klawiszem **DOBRZE.**

Na czas przygotowywania danych do zapisu zapali się komunikat:

W trakcie przepisywania danych zapali się komunikat:

Wyjście z edycji wyboru pliku drukowania bez wprowadzania **X** Anu lu j nowego parametru należy dokonać ikoną ANULUJ

8.0 Podstawowe dane eksploatacyjne sterownika MCS68

8.1 Karta DIN16 (nowego typu)

Karta DIN16 służy do podłączenia 16 sygnałów dwustanowych . Sygnały obiektowe są galwanicznie oddzielone od sterownika. Napięcie izolacji wynosi 2.5kV. System zworek umożliwia wykonanie wspólnej masy lub podania zasilania dla sygnałów obiektowych. Rozmieszczenie sygnałów na złączu obiektowym zawiera tabela . PAKIET WEJŚĆ DWUSTANOWYCH DIN16

00		
		 → +24V
+D00 20 -D00 20 +D01 2	WEJŚCIE DWUSTANOWE	SW SPST
-DØ1 21 +DØ2 25	4	
-D22 4 +D23 23	<u>1</u>	
+004		
+D26 25 -D25 25 -D25 8	-	
-DØ6 -	-	
-D07 10 +D10 29	1	
+D11 30 -D11 30		
+D12 31 -D12 13	-	
-D13 32 +D14 5		
-D14 16 +D15 35	-!	
+D16		
	<u>+</u>	<u> </u>

DIN16

PAKIET DIN16					
ZŁĄCZE	CANNON	37 pin	Żeńskie		
Sygnał wejściowy	Poziom				
0 logiczne	0-9 V				
1 logiczna	15-24 V				
	Wejścia napięciow	ve (konfiguracja 1)			
Nr sygnału	Polaryzacja	Zacisk			
1	+	1			
1	-	20			
2	+	2			
2	-	21			
3	+	3			
3	-	22			
4	+	4			
4	-	23			
Zasilanie	+24V	5			
Zasilanie	+24V	24			
5	+	6			

IMPACT s.c. 02-555 Warszawa Aleje Niepodległości 177 Tel. 825-55-85 Tel/Fax. 825-79-14 impact@impact.com.pl 42/69

5	-	25	
6	+	7	
6	-	26	
7	+	8	
7	-	27	
8	+	9	
8	-	28	
9	+	10	
9	-	29	
10	+	11	
10	-	30	
11	+	12	
11	-	31	
12	+	13	
12	-	32	
Zasilanie	0 V	14	
Zasilanie	0 V	33	
13	+	15	
13	-	34	
14	+	16	
14	-	35	
15	+	17	
15	-	36	
16	+	18	
16	-	37	

Rysunek przedstawia widok karty DIN16. Karta może być adresowana w przedziale od 010h - 0FFh. Standardowy początek adresowania ustalony jest na 080h. Karta zajmuje <u>dwa kolejne</u> adresy w przestrzeni adresowej. Ustawienie adresów odbywa się na 8 pozycyjnym przełączniku DIP. Stan <u>on</u> na przełączniku odpowiada 0 logicznemu, stan <u>off</u> odpowiada 1 logicznej. Tabela przedstawia kolejność bitów adresowych na przełączniku DIP.

BIT	A0	A1	A2	A3	A4	A5	A6	A7
Pozycja	1	2	3	4	5	6	7	8

Przykładowo adres 080H wymaga następującego ustawienia przełączników na DIP:

BIT	A0	A1	A2	A3	A4	A5	A6	A7
Stan	on	on	on	on	on	on	no	off
Pozycja	1	2	3	4	5	6	7	8

Uwaga: Pozycja A0 zawsze ustawiana na 0

Za pomocą zworek można zmienić konfigurację wejść dwustanowych. Umożliwia to na uzyskanie następujących połączeń:

KONFIGU	POZYCJA	DEFINICJA WEJŚCIA
RACJA	ZWOREK	
1	4-5	Wejście napięciowe
2	1-2, 4-5	Wejście napięciowe z wspólnym zerem
3	3-4, 5-6	Wejście do współpracy z stykami
4	1-2, 3-4, 5-6	Wejście do współpracy z stykami z wspólnym
		zerem

8.2 Karta DOUT8

Karta DOUT8 służy do wystawiania 8 sygnałów dwustanowych napięciowych o obciążalności ciągłej do 1.7 A. Sygnały obiektowe są galwanicznie oddzielone od sterownika.

Charakterystyka wyjść pozwala na uzyskanie krótkotrwałych impulsów o obciążalności do 9A. Każdy kanał posiada zabezpieczenie przeciwzwarciowe. W przypadku wystąpienia zwarcia kanał zostaje czasowo wyłączony, i po upłynięciu czasu odstawienia jest ponownie włączony. W przypadku trwania stanu zwarcia cykl wyłączenia powtarza się. System sterujący jest informowany o wystąpieniu stanu przeciążenia.

Rozmieszczenie sygnałów na złączu obiektowym zawiera tabela.

PAKIET WYJŚĆ DWUSTANOWYCH DOUT8_24

	PA	KIET DOUT8	
ZŁĄCZE	CANNON	25 pin	Żeńskie
Sygnał wyjściowy	Poziom		
0 logiczne	0 V		
1 logiczna	24 V		
	Wy	jścia napięciowe	
Nr sygnału	Polaryzacja	Zacisk	
1	Zasilanie +24V	13	
1	Wyjście 1	12	
1	Zasilanie 0V	25	
2	Zasilanie +24V	24	
2	Wyjście 2	23	
2	Zasilanie 0V	11	
3	Zasilanie +24V	10	
3	Wyjście 3	9	
3	Zasilanie 0V	22	
4	Zasilanie +24V	21	
4	Wyjście 4	20	
4	Zasilanie 0V	8	
5	Zasilanie +24V	7	
5	Wyjście 5	6	
5	Zasilanie 0V	19	
6	Zasilanie +24V	18	
6	Wyjście 6	17	
6	Zasilanie 0V	5	
7	Zasilanie +24V	4	
7	Wyjście 7	3	
7	Zasilanie 0V	16	
8	Zasilanie +24V	15	
8	Wyjście 8	14	
8	Zasilanie 0V	2	

Uwaga: 1. Zasilania kanałów 1-2, 3-4, 5-6, 7-8 są ze sobą odpowiednio zwarte.

2. Na pakiecie znajdują się zworki umożliwiające zwarcie ze sobą odpowiednio zasileń par kanałów.

Rysunek przedstawia widok karty DOUT8. Karta może być adresowana w przedziale od 010h - 0FFh. Standardowy początek adresowania ustalony jest na 010h. Karta zajmuje jeden adres w przestrzeni adresowej. Ustawienie adresów odbywa się na 8 pozycyjnym przełączniku DIP. Stan <u>on</u> na przełączniku odpowiada 0 logicznemu, stan <u>off</u> odpowiada 1 logicznej. Tabela przedstawia kolejność bitów adresowych na przełączniku DIP.

Adresowanie karty z wyjściami tranzystorowymi (stary typ)

Tabela przedstawia kolejność bitów adresowych na przełączniku DIP.

BIT	A0	A1	A2	A3	A4	A5	A6	A7
Pozycja	1	2	3	4	5	6	7	8

Przykładowo adres 010H wymaga następującego ustawienia przełączników na DIP:

BIT	A0	A1	A2	A3	A4	A5	A6	A7
Stan	on	on	on	on	off	on	no	on
Pozycja	1	2	3	4	5	6	7	8

Adresowanie karty wyjściami BTS611 (nowy typ)

BIT	A0	A1	A2	A3	A4	A5	A6	A7
Pozycja	1	2	3	4	5	6	7	8

Przykładowo adres 010H wymaga następującego ustawienia przełączników na DIP:

BIT	A0	A1	A2	A3	A4	A5	A6	A7
Stan	on	on	on	on	off	on	no	on
Pozycja	1	2	3	4	5	6	7	8

Na pakiecie nowego typu znajduje się zworka umożliwiająca zdefiniowanie reakcji pakietu na sygnał RESET. Gdy zworka jest założona, pakiet resetuje stan wyjść tylko od podania zasilania systemowego. Gdy zworka jest zdjęta pakiet resetuje stan wyjść od podania zasilania systemowego oraz od sygnału RESET z magistrali.

8.3 Karta SYN01

Karta SYN01 przeznaczona jest do współpracy z pakietami zewnętrznymi tworzącymi synoptykę obiektu. Karta posiada dwa złącza obiektowe. Złącze 9 PIN przeznaczone jest do współpracy z urządzeniami wyposażonymi w interface szeregowe w standardzie RS485. Są to wyświetlacze panelowe PD1, PD2. Złącze 15 PIN przeznaczone jest do współpracy z urządzeniami wyposażonymi w interface szeregowe w standardzie I2C. Są to: wyświetlacz 4 znakowy LED_WYS1/2, wyświetlacz 32 diodowy LED_WYS, konwerter do wyświetlaczy małogabarytowych STER. Wszystkie sygnały są galwanicznie oddzielone od sterownikowych.

Rozmieszczenie sygnałów na złączu obiektowym zawiera tabela ...

PAKIET SYN01 (RS485)								
ZŁĄCZE	CANNON	9 pin	Żeńskie					
	Sygnały tra	ansmisyjne						
Nazwa sygnału	Polaryzacja	Zacisk						
TRx-	-	3						
TRx+	+	4						

	P	AKIET SYN01 (I2C)	
ZŁĄCZE	CANNON	15 pin	Żeńskie
		Sygnały transmisyjne	
Nazwa sygnału		Zacisk	
An		1	
K1		9	
K2		2	
K3		10	
K4		3	
		11	
SDA3		4	
SCL3		12	
SDA2		5	
SCL2		13	
SDA1		6	
SCL1		14	
SDA0		7	
SCL0		15	
GND		8	

Sygnały A, K1, K2, K3, K4 są to dodatkowe kanały wejść dwustanowych. Wchodzą one na diody LED transoptorów połączonych w układzie wspólnej anody.

Sygnały SDAx, SCLx są to sygnały sterujące transmisją I2C. Wyjścia sterujące są typu otwarty kolektor.

Do jednej karty można dołączyć max. 16 wyświetlaczy typ. PD1, PD2, oraz 16 wyświetlaczy cyfrowych LED_WYS1/2, LED_WYS lub jeden konwerter do wyświetlaczy małogabarytowych STER.

Rysunek przedstawia widok karty SYN01. Karta może być adresowana w przedziale od 008h - 0FFh. Standardowy początek adresowania ustalony jest na 008h. Karta zajmuje dwa adresy w przestrzeni adresowej. Ustawienie adresów odbywa się na 8 pozycyjnym przełączniku DIP. Stan <u>on</u> na przełączniku odpowiada 0 logicznemu, stan <u>off</u> odpowiada 1 logicznej. Tabela przedstawia kolejność bitów adresowych na przełączniku DIP.

BIT	A0	A1	A2	A3	A4	A5	A6	A7
Pozycja	1	2	3	4	5	6	7	8

Przykładowo adres 020H wymaga następującego ustawienia przełączników na DIP:

BIT	A0	A1	A2	A3	A4	A5	A6	A7
Stan	on	on	on	off	on	on	no	on
Pozycja	1	2	3	4	5	6	7	8

Uwaga : Bit adresowy A0 jest zawsze ustawiany na on

8.4 Karta sieciowa NET-485-MCS

Karta sieciowa NET-485-MCS jest przeznaczona do prowadzenia transmisji szeregowej w standardzie RS485 z wykorzystaniem protokołu transmisji ModBas-RTU. W systemie sterownika MCS68 karta znajduje zastosowanie do współpracy z dwoma grupami urządzeń. Pierwsza grupa to komputery PC. Druga grupa to urządzenia wyposażone w interface szeregowe RS485. Są to mierniki MT3, MT4, regulator PID01. Istnieje możliwość podłączenia urządzeń innych producentów po uprzednim dostosowaniu oprogramowania SS10.

Rozmieszczenie sygnałów na złączu obiektowym zawiera tabela

PAKIET NET-485-MCS							
OPROGRAMOWANIE	NP485						
ZŁĄCZE	CANNON	9 pin	Żeńskie				
	Sygı	nały transmisyjne					
Nazwa sygnału	Polaryzacja	Zacisk					
TRx-	-	3					
TRx+	+	4					

Rysunek przedstawia widok karty NET-485-MCS

Sterownikowy adres karty

Przy współpracy karty z komputerem PC mogą być ustawione następujące adresy: 000h, 002h, 004h, 006h. <u>Wymienione adresy są zastrzeżone dla kart NET-485-</u> <u>MCS lub RS-232-MCS i nie moga być używane przez inne karty.</u>

Przy współpracy z miernikami MT3, MT4, regulatorami PID01 karta może być adresowana w przedziale od 010h - 0FFh.

Standardowy początek adresowania ustalony jest na 030h. Karta zajmuje dwa adresy w przestrzeni adresowej. Ustawienie adresów odbywa się na 8 pozycyjnym przełączniku DIP. Stan <u>on</u> na przełączniku odpowiada 0 logicznemu, stan <u>off</u> odpowiada 1 logicznej. Tabela przedstawia kolejność bitów adresowych na przełączniku DIP.

BIT	A0	A1	A2	A3	A4	A5	A6	A7
Pozycja	1	2	3	4	5	6	7	8

Przykładowo adres 030H wymaga następującego ustawienia przełączników na DIP:

BIT	A0	A1	A2	A3	A4	A5	A6	A7
Stan	on	on	on	on	off	off	no	On
Pozycja	1	2	3	4	5	6	7	8

Uwaga : Bit adresowy A0 jest zawsze ustawiany na on

Adres sieciowy

Na pakiecie znajduje się przełącznik ustawiający <u>adres sieciowy</u> karty, <u>prędkość</u> transmisji, <u>kontrolę nadawanych bajtów</u>.

System SS10 przewiduje podłączenie do jednego komputera PC max. 8 lub 16 sterowników MCS68. Sterowniki muszą mieć na kartach NET-485-MCS ustawione adresy sieciowe w przedziale 1-8 lub1-16. Adres sieciowy ustawia się na pozycjach A0, A1, A2, A3.

Komunikacja pomiędzy sterownikiem a komputerem odbywa się z prędkością definiowaną wstępnie na przełącznikach DIP. Służą do tego pozycje S1,S2. S3 . Tabela poniżej przedstawia ustawienia przełączników S1-3 dla określonych prędkości transmisji.

Obsługa ustawiania prędkości transmisji wymaga zainstalowania na karcie NET485MCS oraz NET485IBM oprogramowania w wersji NP485 ver.3.40 lub wyższej oraz współpracy z programem SS10 w wersji 4.22 lub wyższej.

Transmisja	S 1	S2	S3
1200	on	On	On
2400	off	On	On
4800	on	Off	On
9600	off	Off	On
19200	on	On	Off
38400	off	On	Off

Uwaga: Stan off=1, stan on=0

Po ustawieniu prędkości transmisji na karcie w sterowniku, taką samą prędkość należy ustawić w konfiguracji programu SS10 w komputerze PC.

Przełącznik DIP oznaczony **KO** włącza kontrolę nadawanych bajtów. Zaleca się pracę z włączoną kontrolą nadawania. W tym celu należy przełącznik **KO** ustawić w pozycji **off**. Analogiczne ustawienie należy wykonać w konfiguracji programu SS10 w komputerze PC.

Tabela przedstawia kolejność przełączników ustawiających parametry transmisji.

BIT	A0	A1	A2	A3	S1	S2	S 3	KO
Pozycja	1	2	3	4	5	6	7	8

Przykładowo adres 001H , transmisja z prędkością 19200, praca z kontrolą nadawania wymaga następującego ustawienia przełączników na DIP:

BIT	A0	A1	A2	A3	S1	S2	S3	KO
Stan	off	on	on	on	on	on	off	off
Pozycja	1	2	3	4	5	6	7	8

8.5 Karta NET-485-IBM

Karta sieciowa NET-485-IBM jest przeznaczona do prowadzenia transmisji szeregowej w standardzie RS485 z wykorzystaniem protokołu transmisji ModBas-RTU. Karta jest przeznaczona do instalowania w komputerze PC. Komunikuje się po łączu RS485 z kartami NET-485-MCS zainstalowanymi w sterownikach. W zależności od wersji oprogramowania obsługuje do 8 lub do 16 sterowników podłączonych do jednej linii transmisyjnej. Istnieje możliwość podłączenia urządzeń innych producentów po uprzednim dostosowaniu oprogramowania SS10.

Rozmieszczenie sygnałów na złączu obiektowym zawiera tabela...

PAKIET NET-485-MCS							
OPROGRAMOWANIE	NP485						
ZŁĄCZE	CANNON	9 pin	Żeńskie				
	Sy	ygnały transmisyjne					
Nr sygnału	Polaryzacja	Zacisk					
TRx-	-	3					
TRx+	+	4					

Rysunek przedstawia widok karty NET-485-IBM. Karta może być adresowana w przedziale od 0300h - 03ffh. Karta zajmuje dwa adresy w przestrzeni adresowej. Ustawienie adresów odbywa się na 8 pozycyjnym przełączniku DIP. Stan <u>on</u> na przełączniku odpowiada 0 logicznemu, stan <u>off</u> odpowiada 1 logicznej. Tabela przedstawia kolejność bitów adresowych na przełączniku DIP. <u>Zalecany adres karty 0340h</u>

BIT	A0	A1	A2	A3	A4	A5	A6	A7
Pozycja	1	2	3	4	5	6	7	8

Uwaga Bity A8, A9 w dekoderze adresów są ustawione zawsze w stan 11

Przykładowo adres 0340H wymaga następującego ustawienia przełączników na DIP:

BIT	A0	A1	A2	A3	A4	A5	A6	A7
Stan	on	on	on	on	on	on	off	on
Pozycja	1	2	3	4	5	6	7	8

8.6 Karta AD16I

Karta AD16I przeznaczona jest do współpracy z prądowymi sygnałami analogowymi. Zakres pomiarowy zawiera się w przedziale 0-21 mA. Rezystancja wejścia wynosi 100R. Karta przyjmuje 16 sygnałów prądowych. Wejścia analogowe nie są izolowane galwanicznie od masy sterownika. Rozmieszczenie sygnałów na złączu obiektowym zawiera tabela.

+AD00	WEJŚCIE PRĄDOWE		+24V
-AD001 +AD001 +AD001 +AD001 +AD000 +AD0000 +AD0000 +AD0000 +AD0000 +AD0000 +AD0000 +AD00000 +AD00000 +AD00000 +AD00000 +AD00000 +AD00000 +AD00000 +AD00000 +AD00000 +AD00000 +AD000000 +AD0000000 +AD000000000 +AD0000000000		SOURCE CURRENT	<u>0</u> V
GNDA 9 GNDA 10 GNDA 11			
103 103 103 103 103 103 103 103			

AD16

PAKIET WEJŚĆ ANALOGOWYCH AD16

	PAKIET AD16I								
ZŁĄCZE	CANNON	37 pin	Męskie						
Wejścia prądowe									
Nr sygnału	Polaryzacja	Zacisk							
1	+	1							
1	-	20							
2	+	2							
2	-	21							
3	+	3							
3	-	22							
4	+	4							
4	-	23							
5	+	5							
5	-	24							
6	+	6							
6	-	25							
7	+	7							
7	-	26							
8	+	8							
8	-	27							
9	+	12							
9	-	30							

10	+	13	
10	-	31	
11	+	14	
11	-	32	
12	+	15	
12	-	33	
13	+	16	
13	-	34	
14	+	17	
14	-	35	
15	+	18	
15	-	36	
16	+	19	
16	-	37	

Rysunek przedstawia widok karty AD16I. Karta może być adresowana w przedziale od 010h - 0FFh. Standardowy początek adresowania ustalony jest na 010h. Karta starego typu zajmuje <u>cztery adresy</u>, a karta nowego typu <u>dwa adresy</u> w przestrzeni adresowej. Ustawienie adresów odbywa się na 8 pozycyjnym przełączniku DIP. Stan <u>on</u> na przełączniku odpowiada 0 logicznemu, stan <u>off</u> odpowiada 1 logicznej.

Adresowanie karty z przetwornikiem uPD7002 (stary typ)

Tabela przedstawia kolejność bitów adresowych na przełączniku DIP.

BIT			A7	A6	A5	A4	A3	A2
Pozycja	1	2	3	4	5	6	7	8

Przykładowo adres 040H wymaga następującego ustawienia przełączników na DIP:

BIT			A7	A6	A5	A4	A3	A2
Stan	off	off	on	off	on	on	no	on
Pozycja	1	2	3	4	5	6	7	8

Uwaga : Pozycje 1,2 zawsze na off

Adresowanie karty z przetwornikiem AD574 (nowy typ)

Tabela przedstawia kolejność bitów adresowych na przełączniku DIP.

BIT	A1	A2	A3	A4	A5	A6	A7	A8
Pozycja	1	2	3	4	5	6	7	8

Przykładowo adres 040H wymaga następującego ustawienia przełączników na DIP:

BIT	A1	A2	A3	A4	A5	A6	A7	A8
Stan	on	on	on	on	on	off	no	off
Pozycja	1	2	3	4	5	6	7	8

Uwaga : Bit adresowy A8 jest zawsze ustawiany na off

8.7 Karta PT4

Karta PT4 przeznaczona jest do współpracy z rezystancyjnymi sygnałami analogowymi. Karta obsługuje cztery wejścia. Układ elektryczny karty pozwala na dwu i trójprzewodowy pomiar rezystancji. Zakresy pomiarowe są indywidualnie dobierane dla każdego egzemplarza. Typowe zakresy pomiarowe definiowane są co 50 oC.

Rozmieszczenie sygnałów na złączu obiektowym zawiera tabela ...

	PA	KIET PT4								
ZŁĄCZE	CANNON	25 pin	Żeńskie							
Uwaga: Tabela dotyczy pakietu w wykonaniu z przetwornikiem AC typ D7002 firmy NEC										
Wejścia rezystancyjne										
Nr sygnału	Polaryzacja	Zacisk								
1	Wyjście prądowe	13, 12								
1	Wejście napięciowe	11								
1	GND	25, 24								
2	Wyjście prądowe	10, 9								
2	Wejście napięciowe	8								
2	GND	22, 21								
3	Wyjście prądowe	7,6								
3	Wejście napięciowe	5								
3	GND	19, 18								
4	Wyjście prądowe	4, 3								
4	Wejście napięciowe	2								
4	GND	16, 15								

	PA	KIET PT4								
ZŁĄCZE	CANNON	25 pin	Żeńskie							
Uwaga: Tabela dotyczy pakietu w wykonaniu z przetwornikiem AC typ AD574 firmy ANALOG DEVICES										
Wejścia rezystancyjne										
Nr sygnału	Polaryzacja	Zacisk								
4	Wyjście prądowe	2	szary							
4	Wejście napięciowe	3	zielony							
4	GND	14, 15, 16	żółty							
3	Wyjście prądowe	5	brązowy							
3	Wejście napięciowe	6	biały							
3	GND	17, 18, 19	różowy							
2	Wyjście prądowe	8	szary							
2	Wejście napięciowe	9	zielony							
2	GND	20, 21, 22	żółty							
1	Wyjście prądowe	11	brązowy							
1	Wejście napięciowe	12	biały							
1	GND	23, 24, 25	różowy							

IMPACT s.c. 02-555 Warszawa Aleje Niepodległości 177 Tel. 825-55-85 Tel/Fax. 825-79-14 impact@impact.com.pl 56/69

PAKIET WEJŚĆ REZYSTANCYJNYCH PT4

Rysunek przedstawia widok karty PT4. Karta może być adresowana w przedziale od 010h - 0FFh. Standardowy początek adresowania ustalony jest na 010h. Karta starego typu zajmuje <u>cztery adresy</u>, a karta nowego typu <u>dwa adresy</u> w przestrzeni adresowej. Ustawienie adresów odbywa się na 8 pozycyjnym przełączniku DIP. Stan <u>on</u> na przełączniku odpowiada 0 logicznemu, stan <u>off</u> odpowiada 1 logicznej. Tabela przedstawia kolejność bitów adresowych na przełączniku DIP.

Adresowanie karty z przetwornikiem uPD7002 (stary typ)

Tabela przedstawia kolejność bitów adresowych na przełączniku DIP.

BIT			A7	A6	A5	A4	A3	A2
Pozycja	1	2	3	4	5	6	7	8

Przykładowo adres 040H wymaga następującego ustawienia przełączników na DIP:

BIT			A7	A6	A5	A4	A3	A2
Stan	off	off	on	off	on	on	no	on
Pozycja	1	2	3	4	5	6	7	8

Uwaga : Pozycje 1,2 zawsze na off

Adresowanie karty z przetwornikiem AD574 (nowy typ)

Tabela przedstawia kolejność bitów adresowych na przełączniku DIP.

BIT	A1	A2	A3	A4	A5	A6	A7	A8
Pozycja	1	2	3	4	5	6	7	8

Przykładowo adres 040H wymaga następującego ustawienia przełączników na DIP:

BIT	A1	A2	A3	A4	A5	A6	A7	A8
Stan	on	on	on	on	on	off	no	off
Pozycja	1	2	3	4	5	6	7	8

Uwaga : Bit adresowy A8 jest zawsze ustawiany na off

8.8 Karta DA4I (stary typ)

Karty DA4I przeznaczona jest do zadawania prądowego sygnału wyjściowego. Karta obsługuje cztery kanały wyjściowe. Wartość prądu wyjściowego zawiera się w przedziale 0-21 ma. Rozdzielczość zadawania prądu 1024 poziomy. Źródło prądowe jest typu "prąd wypływający", wspólnym sygnałem jest 0V. Sygnały wyjściowe są galwanicznie odizolowane od sterownika. Karta wymaga podania zasilania obiektowego 24V.

Rozmieszczenie sygnałów na złączu obiektowym zawiera tabela.

PAKIET PRZETWORNIKÓW CYFRA - ANALOG DA4I

	PAKIE	Г DA4I							
ZŁĄCZE	CANNON	25 pin	żeńskie						
Uwaga: Tabela dotyczy pakietu w wykonaniu z przetwornikami DA zrealizowanymi na licznikach 8253 Wyjścia prądowe									
Nr sygnału	Polaryzacja	Zacisk							
1	Zasilanie +24V	14							
1	Wyjście I1	2							
2	Wyjście U1	1							
2	GND	15							
3	Zasilanie +24V	17							
3	Wyjście I2	5							
4	Wyjście U2	4							
4	GND	18							
5	Zasilanie +24V	21							
5	Wyjście I3	9							
6	Wyjście U3	8							
6	GND	22							
7	Zasilanie +24V	24							
7	Wyjście I4	12							
8	Wyjście U4	11							
8	GND	25							

IMPACT s.c. 02-555 Warszawa Aleje Niepodległości 177 Tel. 825-55-85 Tel/Fax. 825-79-14 impact@impact.com.pl 58/69

Rysunek przedstawia widok karty DA4I. Karta może być adresowana w przedziale od 010h - 0FFh. Standardowy początek adresowania ustalony jest na 0C0h. Karta zajmuje <u>osiem</u> <u>adresów</u> w przestrzeni adresowej. Ustawienie adresów odbywa się na 8 pozycyjnym przełączniku DIP. Stan <u>on</u> na przełączniku odpowiada 0 logicznemu, stan <u>off</u> odpowiada 1 logicznej. Tabela przedstawia kolejność bitów adresowych na przełączniku DIP.

BIT	A7	A6	A5	A4	A3	A3	A3/	A3/
Pozycja	1	2	3	4	5	6	7	8

Uwaga: Bit adresowy A3 należy następująco interpretować:

A3=0 Pozycje 5,6 ustawić on pozycja 7,8 ustawić off

A3=1 Pozycje 5,6 ustawić off pozycja 7,8 ustawić on

Bity A4, A5, A6, A7 interpretować jak na innych DIP ustawiających adres karty.

Przykładowo adres 0C0H wymaga następującego ustawienia przełączników na DIP:

BIT	A7	A6	A5	A4	A3/	A3/	A3	A3
Stan	off	off	on	on	on	on	off	off
Pozycja	1	2	3	4	5	6	7	8

Adres 0C8H wymaga następującego ustawienia przełączników na DIP:

BIT	A7	A6	A5	A4	A3/	A3/	A3	A3
Stan	off	off	on	on	off	off	on	on
Pozycja	1	2	3	4	5	6	7	8

8.9 Karta DA4I-X (nowy typ)

Karty DA4I przeznaczona jest do zadawania prądowego sygnału wyjściowego. Karta obsługuje cztery kanały wyjściowe. Wartość prądu wyjściowego zawiera się w przedziale 0-21 ma. Rozdzielczość zadawania prądu 4096 poziomów. Źródło prądowe jest typu prąd wpływający, wspólnym sygnałem jest +24V. Sygnały wyjściowe są galwanicznie odizolowane od sterownika. Karta wymaga podania zasilania obiektowego 24V.

Rozmieszczenie sygnałów na złączu obiektowym zawiera tabela .

PAKIET PRZETWORNIKÓW CYFRA - ANALOG DA4I-X (nowy)

	PA	KIET DA4I-X	
ZŁĄCZE	CANNON	25 pin	Męskie
Uwaga: Tabela dotycz	zy pakietu w wykonaniu z prze	etwornikami DA zrealizow	anymi na przetwornikach LTC1257
	W	yjścia prądowe	
Nr sygnału	Polaryzacja	Zacisk	
1	Zasilanie +24V	14	
1	Wyjście I1	1	
2	Wyjście U1	2	
2	GND	15	
3	Zasilanie +24V	17	
3	Wyjście I2	4	
4	Wyjście U2	5	
4	GND	18	
5	Zasilanie +24V	20	
5	Wyjście I3	7	
6	Wyjście U3	8	
6	GND	21	
7	Zasilanie +24V	23	
7	Wyjście I4	10	
8	Wyjście U4	11	
8	GND	24	

Rysunek przedstawia widok karty DA4I. Karta może być adresowana w przedziale od 010h - 0FFh. Standardowy początek adresowania ustalony jest na 0C0h. Karta zajmuje <u>dwa adresy</u> w przestrzeni adresowej. Ustawienie adresów odbywa się na 8 pozycyjnym przełączniku DIP. Stan <u>on</u> na przełączniku odpowiada 0 logicznemu, stan <u>off</u> odpowiada 1 logicznej.

Tabela przedstawia kolejność bitów adresowych na przełączniku DIP.

BIT	A1	A2	A3	A4	A5	A6	A7	A8
Pozycja	1	2	3	4	5	6	7	8

Adres A8 należy zawsze ustawiać w pozycji OFF.

Przykładowo adres 0C0H wymaga następującego ustawienia przełączników na DIP:

BIT	A1	A2	A3	A4	A5	A6	A7	A8
Stan	on	on	on	on	on	off	off	off
Pozycja	1	2	3	4	5	6	7	8

9.0 Testowanie pracy sterownika

W celu uzyskania możliwości podglądu pracy sterownika w trybie nadzoru serwisowego należy skorzystać z narzędzi diagnostycznych znajdujących się w oprogramowaniu stacji wizualizacyjnej SS10. Narzędzia te są dostępne dopiero po podaniu hasła dostępowego (o ile zostało uaktywnione).

9.1 Status sterownika

Do kontroli pracy sterownika służy funkcja STATUS STEROWNIKA. Funkcję tą wywołuje się ikoną STEROWNIK

Po wejściu do procedury otwiera się okno STATUS STEROWNIKA. Dostępne są następujące informacje:

- komunikat o wykryciu błędów w trakcie pracy sterownika

zestaw komunikatów o stanie pracy poszczególnych części oprogramowania sterownika

- informacja o zainstalowanej pamięci RAM na pakiecie sterownika

- informacja o procentowym wykorzystaniu czasu pracy sterownika

-zestawy rejestrów do testowania oprogramowania <u>R-1</u>, <u>R-2</u>, <u>R-3</u>, <u>R-4</u>.

 przełączniki <u>System</u>, <u>Struktura</u>, <u>Sekwentery</u>, <u>Karty I/O</u> umożliwiające zmianę stanu pracy poszczególnych części oprogramowania. Umożliwia to ręczne ustawienie trybu <u>Praca</u> lub <u>Stop</u>

przełączniki umożliwiające reset poszczególnych części oprogramowania (<u>System</u>, <u>Struktura</u>, <u>Sekwentery</u>)

Uwaga: <u>STAN PRACY</u> sterownika może samoczynne przełączyć się na <u>STOP</u>. Sytuacja taka zachodzi w przypadku wykrycia nieprawidłowej pracy oprogramowania. W polu <u>BŁĄD SYSTEMU</u> wyświetlony zostanie komunikat o stwierdzonym błędzie. W sytuacji zaobserwowania braku reakcji sterownika należy sprawdzić <u>STATUS</u> <u>STEROWNIKA</u>.

Zestawy <u>Test rejestrów</u> umożliwia zdefiniowanie czterech grup po osiem rejestrów analogowych i osiem dwustanowych. Opcja ta jest wykorzystywana w trakcie uruchomiania programów sterujących. Istnieje możliwość wyboru rejestru podając jego nazwę lub numer. Dla wybranego rejestru można wpisać nową wartość zarówno analogową lub cyfrową.

W celu wpisania nowej wartości analogowej należy wejść kursorem w interesujące pole, nacisnąć lewy klawisz myszy, wykasować dotychczasową wartość, wpisać nową, zakończyć edycję pola klawiszem ENTER.

W celu zmiany stanu rejestru cyfrowego należy nacisnąć kursorem przycisk obok interesującego rejestru dwustanowego. Stan zmieni się na przeciwny. Stan HI oznacza jedynkę logiczną, stan LO oznacza zero logiczne.

Wyjście z funkcji klawiszem ANULUJ.

9.2 Testowanie kart I/O

W celu uruchomienia pracy sterownika istnieją funkcje umożliwiające testowanie pracy kart obiektowych. W ramach testu można odczytać aktualny stan wejścia lub wyjścia, zmienić stan wyjścia. Zmiana stanu wyjścia jest możliwa z poziomu programu testującego tylko w sytuacji gdy żaden inny element oprogramowania (sekwentery, struktura) nie wymusza stanu wyjścia. W przypadku gdy taka sytuacja zaistnieje jest możliwość odłączenia czasowego elementu oprogramowania poprzez ustawienie stanu <u>STOP</u> w <u>STATUSIE</u> <u>STEROWNIKA.</u>

9.2.1 Testowanie karty DIN16

Test karty DIN16 umożliwia odczytanie stanów wejść wybranej karty. Rysunek przedstawia widok okna testowego. Stan wejścia oznaczony jest kolorem. Kolor czarny odpowiada stanowi logicznemu 0, kolor czerwony odpowiada stanowi logicznemu 1. Wyjście z testu ikoną ANULUJ.

UWAGA: W przypadku gdy w sterowniku nie będzie karty o wybranym adresie test wyświetla stany przypadkowe.

9.2.2 Testowanie karty DOUT8

Test karty DOUT8 umożliwia ręczne ustawienie stanów wyjść wybranej karty. Rysunek przedstawia widok okna testowego. Stan wejścia oznaczony jest kolorem. Kolor czarny odpowiada stanowi logicznemu 0, kolor czerwony odpowiada stanowi logicznemu 1. Zmianę stanu uzyskuje się naciskając kursorem klawisz po prawej stronie pola wskazującego stan wyjścia.

Wyjście z testu ikoną ANULUJ.

UWAGA: W przypadku gdy testowanej karty nie ma w kasecie, stany wyjść są przepisywane tylko do rejestrów cyfrowych poszczególnych wyjść. W trakcie testowania kart wyjściowych zaleca się zatrzymanie pracy <u>SEKWENTERÓW</u> oraz <u>STRUKTURY</u>.

9.2.3 Testowanie karty AD16

Test karty AD16 umożliwia odczytanie stanów wejść wybranej karty. Rysunek przedstawia widok okna testowego. Stan wejść jest wyświetlany w zdefiniowanych jednostkach fizycznych.

Wyjście z testu ikoną ANULUJ.

UWAGA: W przypadku gdy w sterowniku nie będzie karty o wybranym adresie test wyświetla stany przypadkowe.

9.2.4 Testowanie karty DA4I, DA4I-X

Test karty DA4I umożliwia ręczne ustawienie stanów wyjść analogowych wybranej karty. Rysunek przedstawia widok okna testowego. Stan wyjścia wyświetlony jest w okienkach poszczególnych kanałów w zdefiniowanych jednostkach fizycznych. W celu zmiany wysterowania wyjścia należy:

- wejść kursorem myszy w pole wartości wyjściowej
- nacisnąć lewy klawisz myszy
- wykasować dotychczasową wartość pola
- wpisać nową wartość
- zakończyć edycję klawiszem ENTER
- nowa wartość wyjścia została wysłana do karty

Wyjście z testu ikoną ANULUJ.

UWAGA: W przypadku gdy testowanej karty nie ma w kasecie, stany wyjść są przepisywane tylko do rejestrów analogowych poszczególnych wyjść. W trakcie testowania kart wyjściowych zaleca się zatrzymanie pracy <u>SEKWENTERÓW</u> oraz <u>STRUKTURY</u>

w oknie STATUS

9.3 Skalowanie kart analogowych

Karty analogowe wymagają wstępnego wyskalowania przed podłączeniem sygnałów obiektowych. Polega to na zasymulowaniu sygnałów analogowych odpowiadających początkowi i końcowi zakresu skalowania, oraz zapamiętaniu tych stanów przez sterownik. Do uaktywnienia opcji skalowania należy użyć ikony

9.3.1 Skalowanie kart AD16I

W celu standardowego wyskalowania karty AD16I należy kolejno do każdego kanału podać prad 4 i 20 mA. Po wejściu do procedury skalowania pojedynczego kanału otworzy się okno skalowania. Dostępne są następujące funkcje okna:

- wynik przetwarzania w kodzie HEX.

- wynik przetwarzania w kodzie dziesiętnym

- potwierdzenie wartości sygnału analogowego odpowiadającego skali MAX.

- potwierdzenie wartości sygnału analogowego odpowiadajacego skali MIN.
- reczne wpisywanie wartości sygnału MAX
- ręczne wpisywanie wartości sygnału MIN
- wartość skalowania MAX
- wartość skalowania MIN
- wartość skali MAX
- wartość skali MIN
- oznaczenie jednostek fizycznych sygnału

😑 Skalowanie wejścia A/D-16						
Hex :0FFFH Dec:4095 J.F.: 100.000 KPa						
MaxSkal. maksimumSet MaxMinSkal. minimumSet Min						
Hex max.: 0E95H Hex min.: 02E5H						
Skala max.: 250.000 Skala min.: 0.00000						
Jednostki fizyczne:KPa						
🗸 Dobrze 🛛 🗶 Anu lu j						

Procedure skalowania pojedynczego kanału należy przeprowadzić w następującej kolejności:

- podłaczyć do wejścia skalowanego kanału zadajnik prądowy

- ustawić prad 4 mA

- po ustabilizowaniu się wskazań wejść kursorem w pole <u>Min</u>, nacisnąć lewy klawisz myszy

- ustawić prad 20 mA

- po ustabilizowaniu się wskazań wejść kursorem w pole Max, nacisnać lewy klawisz myszy

- wejść kursorem w pole Dobrze, nacisnąć lewy klawisz myszy w celu zatwierdzenia wartości skalujących.

- powtórzyć procedurę dla pozostałych kanałów

W celu ręcznego wpisania wartości skalujących należy:

- wejść kursorem w pole <u>Set MIN</u> lub <u>Set MAX</u>, nacisnąć lewy klawisz myszy

- wejść kursorem w pole Hex MIN lub Hex MAX, nacisnać lewy klawisz myszy

- wykasować dotychczasowe wskazanie
- wpisać nową wartość skalowania
- klawiszem ENTER zakończyć edycję wartości skalującej

- wejść kursorem w pole <u>**Dobrze**</u>, nacisnąć lewy klawisz myszy w celu zatwierdzenia wartości skalujących.

9.3.2 Skalowanie kart PT4

W celu standardowego wyskalowania karty PT4 należy kolejno do każdego kanału podać rezystancje charakterystyczne dla dolnego i górnego zakresu pomiaru temperatury. Po wejściu do procedury skalowania pojedynczego kanału otworzy się okno skalowania. Dostępne są następujące funkcje okna:

- wynik przetwarzania w kodzie HEX.

- wynik przetwarzania w kodzie dziesiętnym
- potwierdzenie wartości sygnału analogowego odpowiadajacego skali MAX.
- potwierdzenie wartości sygnału analogowego odpowiadającego skali MIN.
- ręczne wpisywanie wartości sygnału MAX
- reczne wpisywanie wartości sygnału MIN
- wartość skalowania MAX
- wartość skalowania MIN
- wartość skali MAX
- wartość skali MIN
- oznaczenie jednostek fizycznych sygnału

Procedurę skalowania pojedynczego kanału należy przeprowadzić w następującej kolejności:

- podłączyć do wejścia skalowanego kanału dekadę rezystancyjną
- ustawić rezystancję odpowiadającą minimalnemu zakresowi skali
- po ustabilizowaniu się wskazań wejść kursorem w pole <u>Min</u>, nacisnąć lewy klawisz myszy
 ustawić rezystancję odpowiadającą maksymalnemu zakresowi skali
- ustawie rezystancję oupowiauającą maksymanieniu zakresowi skan
- po ustabilizowaniu się wskazań wejść kursorem w pole <u>Max</u>, nacisnąć lewy klawisz myszy

- wejść kursorem w pole <u>**Dobrze**</u>, nacisnąć lewy klawisz myszy w celu zatwierdzenia wartości skalujących.

- powtórzyć procedurę dla pozostałych kanałów

W celu ręcznego wpisania wartości skalujących należy:

- wejść kursorem w pole Set MIN lub Set MAX, nacisnąć lewy klawisz myszy

- wejść kursorem w pole Hex MIN lub Hex MAX, nacisnąć lewy klawisz myszy

- wykasować dotychczasowe wskazanie

- wpisać nową wartość skalowania

- klawiszem ENTER zakończyć edycję wartości skalującej

- wejść kursorem w pole <u>Dobrze</u>, nacisnąć lewy klawisz myszy w celu zatwierdzenia wartości skalujących.

9.3.3 Skalowanie kart DA4I, DA4I-X

W celu standardowego wyskalowania karty DA4I należy dla każdego kanału ustawić ręcznie wartości skalujące sygnał <u>MIN</u>. i <u>MAX.</u> W tym celu do wyjścia skalowanego kanału należy podłączyć miliamperomierz umożliwiający dokładny pomiar prądu 4 i 20 mA. Należy pamiętać o podaniu zasilania 24V skalowanego kanału.

Po wejściu do procedury skalowania pojedynczego kanału otworzy się okno skalowania Dostępne są następujące funkcje okna:

- okno do testowania wyjścia analogowego

- wywołanie funkcji testowania

- wywołanie funkcji ustawiania skali minimum

- wywołanie funkcji ustawiania skali maksimum

- zwiększanie , zmniejszanie jedności, dziesiątek, setek liczby odpowiadającej wartości skalującej ustawiona wartość skalujące min. w kodach bay

- ustawiona wartość skalująca <u>min.</u> w kodach hex.
 ustawiona wartość skalująca max. w kodach hex
- ustawiona wartose skalująca <u>max.</u> w kodach nex
- wartość skali min. w jednostkach fizycznych
- wartość skali max. w jednostkach fizycznych
- oznaczenie jednostek fizycznych sygnału

— Skalowanie wyjśc	cia	D/A-	-4				
D/A -> 0.00000							
Test D/A	† 1	+ 10	100				
Skalowanie min.							
Skalowanie max.	1 *	10 •	100 •				
Hex min.:0001H Hex max.:03FFH	STOP						
Skala min.: 0.00000 Skala max.: 1.00000							
Jednostki fizyczne:							
✓ Dobrze	K A	nulu	j				

Skalowanie pojedynczego kanału wyjściowego należy wykonać w następującej kolejności:

- podłączyć zasilanie 24V do wejścia zasilającego skalowanego kanału
- podłączyć miliamperomierz do wyjścia skalowanego kanału
- wywołać funkcje Skalowanie min
- "klawiszami" ustawić prąd 4 mA.

- wywołać funkcje Skalowanie max

- "klawiszami" ustawić prąd 20 mA.

- wejść kursorem w pole <u>**Dobrze**</u>, nacisnąć lewy klawisz myszy w celu zatwierdzenia wartości skalujących.

W celu szybkiego testowania pracy wyjścia analogowego należy:

- wywołać funkcje Test D/A
- wejść kursorem w górne okno $\underline{D/A} \rightarrow i$ nacisnąć lewy klawisz myszy
- wpisać wartość przetwarzaną w jednostkach fizycznych
- obserwować wskazania miliamperomierza

9.4 Sprawdzanie obiektowych sygnałów sterująco pomiarowych

9.4.1 Sprawdzanie sygnałów analogowych – wejściowych

Sprawdzanie wejść analogowych najlepiej wykonać jest analogicznie zgodnie z procedurą skalowania pojedynczego wejścia analogowego.

9.4.2 Sprawdzanie sygnałów analogowych – wyjściowych

Sprawdzanie wyjść analogowych najlepiej wykonać jest analogicznie zgodnie z procedurą skalowania pojedynczego wyjścia analogowego.

9.4.3 Sprawdzanie sygnałów dwustanowych – wejściowych

W celu sprawdzenia wejścia dwustanowego należy zasymulować pojawienie się sygnału na wejściu dwustanowym. W celu odczytania stanu wejścia należy wejść w opcję **Konfigurowanie kart IO**, a następnie wybrać ikonę <u>Palec</u>. Kolejno należy kliknąć na widoku karty, której wejście ma być sprawdzane. Podanie napięcia 24V powinno spowodować zapalenie się czerwonego pola odpowiednio do danego sygnału. Dodatkowo należy sprawdzić prąd płynący w obwodzie danego sygnału. Powinien on wynosić przy napięciu 24V ok. 10 mA.

Uwaga: Stan wejścia dwustanowego może być programowo zanegowany. W takiej sytuacji stanowi 1=24V odpowiada ciemne pole testowe, stanowi 0=0V odpowiada czerwone pole testowe.

Definicja logiki wejścia definiowana jest w trakcie opisywania (ikona Notes) pojedynczego wejścia dwustanowego.

9.4.4 Sprawdzanie sygnałów dwustanowych – wyjściowych

W celu sprawdzenia wyjścia dwustanowego należy wymusić pojawienie się sygnału na wyjściu dwustanowym. W celu wymuszenia stanu wyjścia należy wejść w opcję **Konfigurowanie kart IO**, a następnie wybrać ikonę <u>Palec</u>. Kolejno należy kliknąć na widoku karty, której wyjście ma być sprawdzane. Na ekranie pojawią się klawisze

sygnalizujace aktualny stan wyjść dwustanowych. W celu zmiany stanu na przeciwny należy kliknąć w polu klawisza. Stan "0" odpowiada polu ciemnemu, stan "1" odpowiada polu czerwonemu.

Uwaga: Test uruchamia wyjścia dwustanowe powodując działanie układów wykonawczych. Należy upewnić się czy uruchomienie ręczne sygnału nie spowoduje awarii urządzenia wykonawczego.

Uwaga: Stan wyjścia dwustanowego może być programowo zanegowany. W takiej sytuacji stanowi 1=24V odpowiada ciemne pole testowe, stanowi 0=0V odpowiada czerwone pole testowe.

Definicja logiki wyjścia definiowana jest w trakcie opisywania (ikona Notes) pojedynczego wyjścia dwustanowego.

Uwaga: Sygnałom dwustanowym wyjściowym przypisane są procedury ustawiające ich stan. Próba ręcznej zmiany sygnału będzie bezskuteczna o ile wspomniane procedury będą aktywne. W celu ich zatrzymania należy wejść w ikonę "Status sterownika" i kliknąć na polach "praca" programów sekwencyjnych i struktury. Zatrzymanie sygnalizowane jest czerwonym napisem STOP.